Math 302.102 Fall 2010 Midterm \#1 (version 2) - Solutions

1. (a) We must choose c so that

$$
1=\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{0}^{2} c x^{3} \mathrm{~d} x
$$

Since

$$
\int_{0}^{2} x^{3} \mathrm{~d} x=\left.\frac{x^{4}}{4}\right|_{0} ^{2}=\frac{2^{4}}{4}-\frac{0^{4}}{4}=4
$$

we conclude that $c=1 / 4$.
(b) By definition, $F(x)=\mathbf{P}\{X \leq x\}$. Note that if $x \leq 0$, then $F(x)=0$, and if $x \geq 2$, then $F(x)=1$. If $0<x<2$, then

$$
F(x)=\int_{0}^{x} f(t) \mathrm{d} t=\int_{0}^{x} \frac{t^{3}}{4} \mathrm{~d} t=\left.\frac{t^{4}}{16}\right|_{0} ^{x}=\frac{x^{4}}{16} .
$$

Hence,

$$
F(x)= \begin{cases}0, & \text { if } x \leq 0 \\ \frac{x^{4}}{16}, & \text { if } 0<x<2 \\ 1, & \text { if } x \geq 2\end{cases}
$$

(c) We find

$$
\mathbf{P}\{X>1\}=1-\mathbf{P}\{X \leq 1\}=1-F(1)=1-\frac{1^{4}}{16}=\frac{15}{16} .
$$

Alternatively,

$$
\mathbf{P}\{X>1\}=\int_{1}^{\infty} f(x) \mathrm{d} x=\int_{1}^{2} \frac{x^{3}}{4} \mathrm{~d} x=\left.\frac{x^{4}}{16}\right|_{1} ^{2}=\frac{2^{4}}{16}-\frac{1^{4}}{16}=\frac{15}{16} .
$$

2. Observe that

\mathbf{P} \{mechanical system operates at least 3 days $\}$
$=1-\mathbf{P}$ \{mechanical system does not operate at least 3 days $\}$
$=1-\mathbf{P}\{$ both components fail within 3 days $\}$
$=1-\mathbf{P}\{$ component 1 fails within 3 days $\} \mathbf{P}$ \{component 2 fails within 3 days $\}$
where the last equality follows since the two components are assumed to perform independently. Since component i has an exponential distribution with parameter λ_{i}, we find
$\mathbf{P}\{$ component i fails within 3 days $\}=\int_{0}^{3} \lambda_{i} e^{-\lambda_{i} x} \mathrm{~d} x=-\left.e^{-\lambda_{i} x}\right|_{0} ^{3}=1-e^{-3 \lambda_{i}}$.
Since $\lambda_{1}=1$ and $\lambda_{2}=5$, the required probability is
$\mathbf{P}\{$ mechanical system operates at least 3 days $\}=1-\left[1-e^{-3 \lambda_{1}}\right]\left[1-e^{-3 \lambda_{2}}\right]$

$$
=1-\left[1-e^{-3}\right]\left[1-e^{-15}\right] .
$$

3. The key to answering this question is to recall that if A and B are any events, then

$$
\mathbf{P}\{A \cup B\}=\mathbf{P}\{A\}+\mathbf{P}\{B\}-\mathbf{P}\{A \cap B\}
$$

(a) If A and B are disjoint events, then $\mathbf{P}\{A \cap B\}=0$. Thus,

$$
0.8=0.4+\mathbf{P}\{B\}+0
$$

implying that $\mathbf{P}\{B\}=0.8-0.4=0.4$.
(b) If A and B are independent events, then $\mathbf{P}\{A \cap B\}=\mathbf{P}\{A\} \mathbf{P}\{B\}=0.4 \mathbf{P}\{B\}$. Thus,

$$
0.8=0.4+\mathbf{P}\{B\}-0.4 \mathbf{P}\{B\}
$$

implying that

$$
\mathbf{P}\{B\}=\frac{0.8-0.4}{1-0.4}=\frac{0.4}{0.6}=\frac{2}{3} .
$$

(c) By definition, $\mathbf{P}\{A \cap B\}=\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}=(0.3)(0.4)=0.12$. Thus,

$$
0.8=0.4+\mathbf{P}\{B\}-0.12
$$

implying that $\mathbf{P}\{B\}=0.8-0.4+0.12=0.52$.
4. Let W_{j}, R_{j}, B_{j} denote the event that a white ball, red ball, black ball, respectively, was selected on draw j.
(a) Using the law of total probability we find

$$
\begin{aligned}
\mathbf{P}\left\{R_{2}\right\} & =\mathbf{P}\left\{R_{2} \mid R_{1}\right\} \mathbf{P}\left\{R_{1}\right\}+\mathbf{P}\left\{R_{2} \mid W_{1}\right\} \mathbf{P}\left\{W_{1}\right\}+\mathbf{P}\left\{R_{2} \mid B_{1}\right\} \mathbf{P}\left\{B_{1}\right\} \\
& =\frac{8}{18} \cdot \frac{5}{15}+\frac{5}{18} \cdot \frac{4}{15}+\frac{5}{18} \cdot \frac{6}{15} \\
& =\frac{5}{15}\left[\frac{8}{18}+\frac{4}{18}+\frac{6}{18}\right] \\
& =\frac{5}{15}
\end{aligned}
$$

Notice that the probability that the second ball is red is the same as the probability that the first ball is red; that is, $\mathbf{P}\left\{R_{1}\right\}=\mathbf{P}\left\{R_{2}\right\}=5 / 15$. However, the events R_{1} and R_{2} are not independent. This is because

$$
\mathbf{P}\left\{R_{1} \cap R_{2}\right\}=\mathbf{P}\left\{R_{2} \mid R_{1}\right\} \mathbf{P}\left\{R_{1}\right\}=\frac{8}{18} \cdot \frac{5}{15}
$$

which does not equal $\mathbf{P}\left\{R_{1}\right\} \mathbf{P}\left\{R_{2}\right\}$.
4. (b) Using Bayes' rule we find

$$
\mathbf{P}\left\{B_{1} \mid R_{2}\right\}=\frac{\mathbf{P}\left\{R_{2} \mid B_{1}\right\} \mathbf{P}\left\{B_{1}\right\}}{\mathbf{P}\left\{R_{1}\right\}}=\frac{\frac{5}{18} \cdot \frac{6}{15}}{\frac{8}{18} \cdot \frac{5}{15}+\frac{5}{18} \cdot \frac{4}{15}+\frac{5}{18} \cdot \frac{6}{15}}=\frac{30}{40+20+30}=\frac{1}{3} .
$$

5. Let X denote the number of passengers who do not show up so that X has a binomial distribution with $n=122$ trials and probability of success $p=0.06$ on each trial. Note that we are defining "success" as "passenger does not show up."

Observe that there will be a seat for every passenger if and only if at least 2 passengers do not show up. Thus,

$$
\begin{aligned}
& \mathbf{P}\{\text { there will be a seat for every passenger }\} \\
& \quad=\mathbf{P}\{X \geq 2\} \\
& \quad=1-\mathbf{P}\{X<2\} \\
& \quad=1-\mathbf{P}\{X=0\}-\mathbf{P}\{X=1\} \\
& \quad=1-\binom{122}{0}(0.06)^{0}(0.94)^{122}-\binom{122}{1}(0.06)^{1}(0.94)^{121} \\
& \quad=1-(0.94)^{122}-122(0.06)(0.94)^{121} .
\end{aligned}
$$

Although it was not required, this expression for the probability can be computed. It is approximately 0.995371 .

