Math 302.102 Fall 2010 Computing Probabilities for Discrete Random Variables

Example. Suppose that the joint probability function $\mathbf{P} \{X = x, Y = y\}$ of X and Y is as follows.

$X \downarrow Y \rightarrow$	Y = 2	Y = 4	Y = 6
X = 1	0.05	0.14	0.10
X = 2	0.25	0.10	0.02
X = 3	0.15	0.17	0.02

- (a) Determine $\mathbf{P} \{ XY < 6 \}$.
- (b) Determine the marginal for Y. In other words, determine $\mathbf{P} \{Y = y\}$ for all values of y.
- (c) Determine the conditional probability function (or conditional mass function or conditional density) for X given Y = 4. In other words, determine $\mathbf{P} \{X = x | Y = 4\}$ for all values of x.
- (d) Compute $\mathbb{E}(X | Y = 4)$, the conditional expectation of X given Y = 4.
- (e) Determine the marginal for X. In other words, determine $\mathbf{P} \{X = x\}$ for all values of x.
- (f) Determine the conditional probability function (or conditional mass function or conditional density) for Y given X = 3. In other words, determine $\mathbf{P} \{Y = y \mid X = 3\}$ for all values of y.
- (g) Compute $\mathbb{E}(Y | X = 3)$, the conditional expectation of Y given X = 3.
- (h) Compute Cov(X, Y), the covariance of X and Y. Note that

$$\operatorname{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

Math 302.102 Fall 2010 Computing Probabilities for Continuous Random Variables

Example. Suppose that a random vector (X, Y) has joint density function

$$f_{X,Y}(x,y) = \begin{cases} 15x^2y, & \text{if } 0 < x < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Verify that $f_{X,Y}$ is, in fact, a legitimate density function.
- (b) Find $f_X(x)$, the marginal density function of X.
- (c) Use your result of (b) to compute $\mathbb{E}(X)$.
- (d) Find $f_{Y|X=x}(y) = f_{Y|X}(y|x)$, the conditional density function of Y given X = x.
- (e) Compute $\mathbb{E}(Y | X = x)$.
- (f) Find $f_Y(y)$, the marginal density function of Y.
- (g) Use your result of (f) to compute $\mathbb{E}(Y)$.
- (h) Compute Cov(X, Y), the covariance of X and Y. Note that

$$\operatorname{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$