Math 302.102 Fall 2010
Computing Probabilities for Discrete Random Variables
Example. Suppose that the joint probability function $\mathbf{P}\{X=x, Y=y\}$ of X and Y is as follows.

$X \downarrow Y \rightarrow$	$Y=2$	$Y=4$	$Y=6$
$X=1$	0.05	0.14	0.10
$X=2$	0.25	0.10	0.02
$X=3$	0.15	0.17	0.02

(a) Determine $\mathbf{P}\{X Y<6\}$.
(b) Determine the marginal for Y. In other words, determine $\mathbf{P}\{Y=y\}$ for all values of y.
(c) Determine the conditional probability function (or conditional mass function or conditional density) for X given $Y=4$. In other words, determine $\mathbf{P}\{X=x \mid Y=4\}$ for all values of x.
(d) Compute $\mathbb{E}(X \mid Y=4)$, the conditional expectation of X given $Y=4$.
(e) Determine the marginal for X. In other words, determine $\mathbf{P}\{X=x\}$ for all values of x.
(f) Determine the conditional probability function (or conditional mass function or conditional density) for Y given $X=3$. In other words, determine $\mathbf{P}\{Y=y \mid X=3\}$ for all values of y.
(g) Compute $\mathbb{E}(Y \mid X=3)$, the conditional expectation of Y given $X=3$.
(h) Compute $\operatorname{Cov}(X, Y)$, the covariance of X and Y. Note that

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

Math 302.102 Fall 2010
Computing Probabilities for Continuous Random Variables
Example. Suppose that a random vector (X, Y) has joint density function

$$
f_{X, Y}(x, y)= \begin{cases}15 x^{2} y, & \text { if } 0<x<y<1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Verify that $f_{X, Y}$ is, in fact, a legitimate density function.
(b) Find $f_{X}(x)$, the marginal density function of X.
(c) Use your result of (b) to compute $\mathbb{E}(X)$.
(d) Find $f_{Y \mid X=x}(y)=f_{Y \mid X}(y \mid x)$, the conditional density function of Y given $X=x$.
(e) Compute $\mathbb{E}(Y \mid X=x)$.
(f) Find $f_{Y}(y)$, the marginal density function of Y.
(g) Use your result of (f) to compute $\mathbb{E}(Y)$.
(h) Compute $\operatorname{Cov}(X, Y)$, the covariance of X and Y. Note that

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

