Math 302.102 Fall 2010
Summary of Discrete Random Variables
A random variable X is called discrete if it can assume at most countably many values. A discrete random variable can be completely described by its probability mass function (also called its probability function or mass function or probability density function or density function) which is just the values of

$$
\mathbf{P}\{X=k\}
$$

for $k \in \mathbb{Z}$.
Example. We say that a random variable X has a Bernoulli distribution with parameter p for some $0 \leq p \leq 1$ if

$$
\mathbf{P}\{X=1\}=p \quad \text { and } \quad \mathbf{P}\{X=0\}=1-p
$$

Note that

$$
\mathbb{E}(X)=p \quad \text { and } \quad \operatorname{Var}(X)=p(1-p)
$$

Often we write $X \sim \operatorname{Bernoulli}(p)$ for such a random variable.
Example. We say that a random variable X has a binomial distribution with parameters n and p for some positive integer n and some $0 \leq p \leq 1$ if

$$
\mathbf{P}\{X=k\}=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

for $k=0,1,2, \ldots, n$. Note that

$$
\mathbb{E}(X)=n p \quad \text { and } \quad \operatorname{Var}(X)=n p(1-p)
$$

Often we write $X \sim \operatorname{Bin}(n, p)$ for such a random variable.
Example. We say that a random variable X has a Poisson distribution with parameter λ for some $\lambda>0$ if

$$
\mathbf{P}\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

for $k=0,1,2, \ldots, n$. Note that

$$
\mathbb{E}(X)=\lambda \quad \text { and } \quad \operatorname{Var}(X)=\lambda
$$

Often we write $X \sim \operatorname{Poisson}(\lambda)$ for such a random variable.
Example. We say that a random variable X has a geometric distribution with parameter p for some $0<p<1$ if

$$
\mathbf{P}\{X=k\}=(1-p)^{k-1} p
$$

for $k=1,2, \ldots, n$. Note that

$$
\mathbb{E}(X)=\frac{1}{p} \quad \text { and } \quad \operatorname{Var}(X)=\frac{1-p}{p^{2}}
$$

Often we write $X \sim \operatorname{Geometric}(p)$ for such a random variable.

Math 302.102 Fall 2010
Calculations of Means and Variances for Discrete Random Variables
If X is a discrete random variable, then its expected value $\mathbb{E}(X)$ is just the weighted average of its possible values; that is,

$$
E(X)=\sum_{k=-\infty}^{\infty} k \mathbf{P}\{X=k\}
$$

Its second moment $\mathbb{E}\left(X^{2}\right)$ is just the weighted average of its possible values squared; that is,

$$
E\left(X^{2}\right)=\sum_{k=-\infty}^{\infty} k^{2} \mathbf{P}\{X=k\} .
$$

Furthermore, $\operatorname{Var}(X)$ can be computed as $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}$.
Example. If $X \sim \operatorname{Bernoulli}(p)$, then

$$
E(X)=0 \cdot \mathbf{P}\{X=0\}+1 \cdot \mathbf{P}\{X=1\}=0 \cdot(1-p)+1 \cdot p=p
$$

and

$$
E\left(X^{2}\right)=0^{2} \cdot \mathbf{P}\{X=0\}+1^{2} \cdot \mathbf{P}\{X=1\}=0^{2} \cdot(1-p)+1^{2} \cdot p=p
$$

so that

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}=p-p^{2}=p(1-p)
$$

Example. If $X \sim \operatorname{Bin}(n, p)$, then we can express X as $X=X_{1}+X_{2}+\cdots+X_{n}$ where X_{1}, \ldots, X_{n} are iid $\operatorname{Bernoulli}(p)$ random variables. Thus,

$$
\mathbb{E}(X)=\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right)=p+\cdots+p=n p
$$

and
$\operatorname{Var}(X)=\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=p(1-p)+\cdots+p(1-p)=n p(1-p)$.
In order to calculate the variance of both a geometric random variable and a Poisson random variable, it turns out that it is not so easy to calculate the second moment directly. Instead, it turns out to be easier to consider $\mathbb{E}[X(X-1)]$. This is not a problem since

$$
\mathbb{E}[X(X-1)]=\mathbb{E}\left(X^{2}-X\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)
$$

Thus, if we can calculate $\mathbb{E}[X(X-1)]$, then we can find $\mathbb{E}\left(X^{2}\right)=\mathbb{E}[X(X-1)]+\mathbb{E}(X)$.
Example. If $X \sim \operatorname{Poisson}(\lambda)$, then

$$
\mathbb{E}(X)=\sum_{k=0}^{\infty} k \cdot \frac{\lambda^{k}}{k!} e^{-\lambda}=e^{-\lambda} \sum_{k=1}^{\infty} k \cdot \frac{\lambda^{k}}{k!}=\lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}=\lambda e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!}=\lambda e^{-\lambda} e^{\lambda}=\lambda
$$

and

$$
\begin{aligned}
\mathbb{E}[X(X-1)]=\sum_{k=0}^{\infty} k(k-1) \cdot \frac{\lambda^{k}}{k!} e^{-\lambda}=e^{-\lambda} \sum_{k=2}^{\infty} k(k-1) \cdot \frac{\lambda^{k}}{k!} & =e^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^{k}}{(k-2)!} \\
& =\lambda^{2} e^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} \\
& =\lambda^{2} e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} \\
& =\lambda^{2} e^{-\lambda} e^{\lambda} \\
& =\lambda^{2}
\end{aligned}
$$

so that

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}=\mathbb{E}[X(X-1)]+\mathbb{E}(X)-[\mathbb{E}(X)]^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

Example. If $X \sim \operatorname{Geometric}(p)$, then in order to compute $\mathbb{E}(X)$ and $\operatorname{Var}(X)$, we need to sum up some particular series. To begin, note that if $0<q<1$, then

$$
\sum_{k=1}^{\infty} k q^{k-1}=\sum_{k=1}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} q} q^{k}=\frac{\mathrm{d}}{\mathrm{~d} q} \sum_{k=1}^{\infty} q^{k}=\frac{\mathrm{d}}{\mathrm{~d} q}\left[\left(\sum_{k=0}^{\infty} q^{k}\right)-1\right]=\frac{\mathrm{d}}{\mathrm{~d} q}\left[\frac{1}{1-q}-1\right]=\frac{1}{(1-q)^{2}}
$$

Furthermore,

$$
\begin{aligned}
\sum_{k=2}^{\infty} k(k-1) q^{k-2}=\sum_{k=2}^{\infty} \frac{\mathrm{d}^{2}}{\mathrm{~d} q^{2}} q^{k}=\frac{\mathrm{d}^{2}}{\mathrm{~d} q^{2}} \sum_{k=2}^{\infty} q^{k}=\frac{\mathrm{d}^{2}}{\mathrm{~d} q^{2}}\left[\left(\sum_{k=0}^{\infty} q^{k}\right)-1-q\right] & =\frac{\mathrm{d}^{2}}{\mathrm{~d} q^{2}}\left[\frac{1}{1-q}-1-q\right] \\
& =\frac{2}{(1-q)^{3}}
\end{aligned}
$$

Thus, we see that

$$
\mathbb{E}(X)=\sum_{k=1}^{\infty} k \cdot(1-p)^{k-1} p=p \sum_{k=1}^{\infty} k(1-p)^{k-1}=\frac{p}{(1-(1-p))^{2}}=\frac{p}{p^{2}}=\frac{1}{p}
$$

and

$$
\begin{aligned}
\mathbb{E}[X(X-1)]=\sum_{k=1}^{\infty} k(k-1) \cdot(1-p)^{k-1} p=p \sum_{k=2}^{\infty} k(k-1)(1-p)^{k-1} & =p(1-p) \sum_{k=2}^{\infty} k(k-1)(1-p)^{k-2} \\
& =\frac{2 p(1-p)}{(1-(1-p))^{3}} \\
& =\frac{2 p(1-p)}{p^{3}} \\
& =\frac{2(1-p)}{p^{2}}
\end{aligned}
$$

so that
$\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}=\mathbb{E}[X(X-1)]+\mathbb{E}(X)-[\mathbb{E}(X)]^{2}=\frac{2(1-p)}{p^{2}}+\frac{1}{p}-\frac{1}{p^{2}}=\frac{1-p}{p^{2}}$.

