
Math 302.102 Fall 2010
Some Examples of a One-Dimensional Change of Variables

Suppose that X is a continuous random variable and that Y = g(X) for some continuous
function g : R → R so that Y is itself a continuous random variable. It is often the case
in practice that one knows the density function of X and seeks the density function of Y .
Fortunately, if g is a nice function (as it usually is in practice), then it is straightforward to
determine the density of Y from first principles. Basically, one starts with the definition of
the distribution function of Y substitutes in Y = g(X), and solves for X. This produces
an integral expression involving the density function of X which can then be differentiated
using the fundamental theorem of calculus to yield the density function for Y . Sometimes
this is called a one-dimensional change of variables. The following examples illustrate this
technique. Remember that in order to use the fundamental theorem of calculus, it must
be the case that a variable appears in the upper limit of integration and that no variable
appears in the lower limit of integration.

Example. Suppose that X ∼ N (0, 1). Let Y = eX . Determine the density function of Y .

Solution. Let Y = eX . For y > 0, the distribution function of Y is
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for y > 0. The random variable Y is an example of a log-normal random variable which is
regularly encountered in the mathematical theory of stock option pricing.

Example. Suppose that X ∼ N (0, 1). Let Y = X2. Determine the density function of Y .

Solution. Let Y = X2 so that

FY (y) = P {Y ≤ y} = P
{
X2 ≤ y

}
.

Note that since X can take on any real value, we have
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and so
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for y > 0. Note that the random variable Y has a Gamma(1/2, 1/2) distribution, or equiva-
lently, Y ∼ χ2(1) and often appears in statistical inference.

Example. Suppose that X ∈ Γ(a, b) so that the density of X is

fX(x) =
ba

Γ(a)
xa−1e−bx

for x ≥ 0. Let Y = 1/X. Determine the density function of Y .

Solution. Let Y = 1/X. For y > 0, the distribution function of Y is

FY (y) = P {Y ≤ y} = P {1/X ≤ y} = P {X ≥ 1/y} = 1−P {X < 1/y}

= 1−
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for y > 0. The random variable Y is an example of an inverse gamma random variable with
parameters a and b and is used primarily in Bayesian statistics though it sometimes finds
applications in actuarial science.


