Math 302.102 Fall 2010
Some Examples of a One-Dimensional Change of Variables
Suppose that X is a continuous random variable and that $Y=g(X)$ for some continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ so that Y is itself a continuous random variable. It is often the case in practice that one knows the density function of X and seeks the density function of Y. Fortunately, if g is a nice function (as it usually is in practice), then it is straightforward to determine the density of Y from first principles. Basically, one starts with the definition of the distribution function of Y substitutes in $Y=g(X)$, and solves for X. This produces an integral expression involving the density function of X which can then be differentiated using the fundamental theorem of calculus to yield the density function for Y. Sometimes this is called a one-dimensional change of variables. The following examples illustrate this technique. Remember that in order to use the fundamental theorem of calculus, it must be the case that a variable appears in the upper limit of integration and that no variable appears in the lower limit of integration.

Example. Suppose that $X \sim \mathcal{N}(0,1)$. Let $Y=e^{X}$. Determine the density function of Y.
Solution. Let $Y=e^{X}$. For $y>0$, the distribution function of Y is

$$
F_{Y}(y)=\mathbf{P}\{Y \leq y\}=\mathbf{P}\left\{e^{X} \leq y\right\}=\mathbf{P}\{X \leq \log y\}=\int_{-\infty}^{\log y} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x
$$

so that the density function of Y is

$$
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} \int_{-\infty}^{\log y} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x=\frac{1}{\sqrt{2 \pi}} e^{-(\log y)^{2} / 2} \cdot \frac{\mathrm{~d}}{\mathrm{~d} y} \log y=\frac{1}{y \sqrt{2 \pi}} e^{-(\log y)^{2} / 2}
$$

for $y>0$. The random variable Y is an example of a log-normal random variable which is regularly encountered in the mathematical theory of stock option pricing.

Example. Suppose that $X \sim \mathcal{N}(0,1)$. Let $Y=X^{2}$. Determine the density function of Y.
Solution. Let $Y=X^{2}$ so that

$$
F_{Y}(y)=\mathbf{P}\{Y \leq y\}=\mathbf{P}\left\{X^{2} \leq y\right\} .
$$

Note that since X can take on any real value, we have

$$
\begin{aligned}
\mathbf{P}\left\{X^{2} \leq y\right\}=\mathbf{P}\{-\sqrt{y} \leq X \leq \sqrt{y}\} & =\int_{-\sqrt{y}}^{\sqrt{y}} f_{X}(x) \mathrm{d} x \\
& =\int_{-\sqrt{y}}^{0} f_{X}(x) \mathrm{d} x+\int_{0}^{\sqrt{y}} f_{X}(x) \mathrm{d} x \\
& =\int_{0}^{\sqrt{y}} f_{X}(x) \mathrm{d} x-\int_{0}^{-\sqrt{y}} f_{X}(x) \mathrm{d} x \\
& =\int_{0}^{\sqrt{y}} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x-\int_{0}^{-\sqrt{y}} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x
\end{aligned}
$$

and so

$$
\begin{aligned}
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y) & =\frac{\mathrm{d}}{\mathrm{~d} y} \int_{0}^{\sqrt{y}} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x-\frac{\mathrm{d}}{\mathrm{~d} y} \int_{0}^{-\sqrt{y}} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x \\
& =\frac{1}{\sqrt{2 \pi}} e^{-(\sqrt{y})^{2} / 2} \cdot \frac{\mathrm{~d}}{\mathrm{~d} y}(\sqrt{y})-\frac{1}{\sqrt{2 \pi}} e^{-(-\sqrt{y})^{2} / 2} \cdot \frac{\mathrm{~d}}{\mathrm{~d} y}(-\sqrt{y}) \\
& =\frac{1}{\sqrt{2 \pi}} e^{-y / 2} \cdot \frac{1}{2 \sqrt{y}}+\frac{1}{\sqrt{2 \pi}} e^{-y / 2} \cdot \frac{1}{2 \sqrt{y}} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{y}} e^{-y / 2}
\end{aligned}
$$

for $y>0$. Note that the random variable Y has a $\operatorname{Gamma}(1 / 2,1 / 2)$ distribution, or equivalently, $Y \sim \chi^{2}(1)$ and often appears in statistical inference.

Example. Suppose that $X \in \Gamma(a, b)$ so that the density of X is

$$
f_{X}(x)=\frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-b x}
$$

for $x \geq 0$. Let $Y=1 / X$. Determine the density function of Y.
Solution. Let $Y=1 / X$. For $y>0$, the distribution function of Y is

$$
\begin{aligned}
F_{Y}(y)=\mathbf{P}\{Y \leq y\}=\mathbf{P}\{1 / X \leq y\}=\mathbf{P}\{X \geq 1 / y\} & =1-\mathbf{P}\{X<1 / y\} \\
& =1-\int_{-\infty}^{1 / y} \overline{b^{a}} \overline{\Gamma(a)} x^{a-1} e^{-b x} \mathrm{~d} x
\end{aligned}
$$

so that the density function of Y is
$f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{d} y} F_{y}(y)=\frac{\mathrm{d}}{\mathrm{d} y}\left(1-\int_{-\infty}^{1 / y} \frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-b x} \mathrm{~d} x\right)=\frac{b^{a}}{\Gamma(a)} y^{1-a} e^{-b / y} \cdot \frac{1}{y^{2}}=\frac{b^{a}}{\Gamma(a)} y^{-a-1} e^{-b / y}$
for $y>0$. The random variable Y is an example of an inverse gamma random variable with parameters a and b and is used primarily in Bayesian statistics though it sometimes finds applications in actuarial science.

