Math 302.102 Fall 2010
The Maximum and Minimum of Two IID Random Variables
Suppose that X_{1} and X_{2} are independent and identically distributed (iid) continuous random variables. By independent, we mean that

$$
\mathbf{P}\left\{X_{1} \in A, X_{2} \in B\right\}=\mathbf{P}\left\{X_{1} \in A\right\} \mathbf{P}\left\{X_{2} \in B\right\}
$$

for any $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$. By identically distributed we mean that X_{1} and X_{2} each have the same distribution function F (and therefore the same density function f).
Two quantities of interest are the maximum and minimum of X_{1} and X_{2}. It turns out to be surprisingly easy to determine the distribution and density functions of the maximum and minimum.

The two key observations are that

$$
\max \left\{X_{1}, X_{2}\right\} \leq x \text { if and only if both } X_{1} \leq x \text { and } X_{2} \leq x
$$

and

$$
\min \left\{X_{1}, X_{2}\right\}>x \text { if and only if both } X_{1}>x \text { and } X_{2}>x
$$

In other words, an upper bound for the maximum gives an upper bound for each of X_{1} and X_{2}, while a lower bound for the minimum gives a lower bound for each of X_{1} and X_{2}.

Distribution of $\max \left\{X_{1}, X_{2}\right\}$

Suppose that $X=\max \left\{X_{1}, X_{2}\right\}$. By definition, the distribution function of X is

$$
\begin{aligned}
F_{X}(x)=\mathbf{P}\{X \leq x\}=\mathbf{P}\left\{\max \left\{X_{1}, X_{2}\right\} \leq x\right\} & =\mathbf{P}\left\{X_{1} \leq x \text { and } X_{2} \leq x\right\} \\
& =\mathbf{P}\left\{X_{1} \leq x, X_{2} \leq x\right\} \\
& =\mathbf{P}\left\{X_{1} \leq x\right\} \mathbf{P}\left\{X_{2} \leq x\right\}
\end{aligned}
$$

using the fact that X_{1} and X_{2} are independent. However, both X_{1} and X_{2} have the same distribution function F and the same density function f. This means that

$$
\mathbf{P}\left\{X_{1} \leq x\right\}=F(x)=\int_{-\infty}^{x} f(x) \mathrm{d} x \text { and } \mathbf{P}\left\{X_{2} \leq x\right\}=F(x)=\int_{-\infty}^{x} f(x) \mathrm{d} x .
$$

Therefore,

$$
F_{X}(x)=F(x) \cdot F(x)=[F(x)]^{2} .
$$

The density function of $X=\max \left\{X_{1}, X_{2}\right\}$ can now be found by differentiation, namely

$$
f_{X}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} F_{X}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}[F(x)]^{2}=2 F(x) F^{\prime}(x)=2 f(x) F(x) .
$$

Distribution of $\min \left\{X_{1}, X_{2}\right\}$

Suppose that $Y=\min \left\{X_{1}, X_{2}\right\}$. By definition, the distribution function of Y is

$$
F_{Y}(y)=\mathbf{P}\{Y \leq y\}=\mathbf{P}\left\{\min \left\{X_{1}, X_{2}\right\} \leq y\right\}
$$

However, knowing an upper bound on the minimum is not of any use to us. Instead, we consider

$$
F_{Y}(y)=\mathbf{P}\{Y \leq y\}=1-\mathbf{P}\{Y>y\}=1-\mathbf{P}\left\{\min \left\{X_{1}, X_{2}\right\}>y\right\}
$$

This is useful to us since

$$
\mathbf{P}\left\{\min \left\{X_{1}, X_{2}\right\}>y\right\}=\mathbf{P}\left\{X_{1}>y, X_{2}>y\right\}=\mathbf{P}\left\{X_{1}>y\right\} \mathbf{P}\left\{X_{2}>y\right\}
$$

using the fact that X_{1} and X_{2} are independent. However, both X_{1} and X_{2} have the same distribution function F and the same density function f. This means that

$$
\mathbf{P}\left\{X_{1}>y\right\}=1-F(y)=\int_{y}^{\infty} f(x) \mathrm{d} x \quad \text { and } \quad \mathbf{P}\left\{X_{2}>y\right\}=1-F(y)=\int_{y}^{\infty} f(x) \mathrm{d} x .
$$

Therefore,

$$
F_{Y}(y)=1-\mathbf{P}\{Y>y\}=1-[1-F(y)] \cdot[1-F(y)]=1-[1-F(y)]^{2} .
$$

The density function of $Y=\min \left\{X_{1}, X_{2}\right\}$ can now be found by differentiation, namely

$$
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y}\left(1-[1-F(y)]^{2}\right)=2[1-F(y)] F^{\prime}(y)=2 f(y)[1-F(y)]
$$

Example. Suppose that X_{1} and X_{2} are independent random variables each having the $\operatorname{Exp}(\lambda)$ distribution. Determine the density functions of $\max \left\{X_{1}, X_{2}\right\}$, and $\min \left\{X_{1}, X_{2}\right\}$.

Solution. Since X_{1} and X_{2} are iid $\operatorname{Exp}(\lambda)$ random variables, they have common density function $f(x)=\lambda e^{-\lambda x}, x \geq 0$, and common distribution functions

$$
F(x)= \begin{cases}0, & x<0 \\ 1-e^{-\lambda x}, & x \geq 0\end{cases}
$$

Thus, the density function of $X=\max \left\{X_{1}, X_{2}\right\}$ is

$$
f_{X}(x)=2 \lambda e^{-\lambda x}\left[1-e^{-\lambda x}\right]
$$

for $x \geq 0$, and the density function of $Y=\min \left\{X_{1}, X_{2}\right\}$ is

$$
f_{Y}(y)=2 \lambda e^{-2 \lambda y}
$$

for $y \geq 0$. Note that we recognize the distribution of Y as $Y \sim \operatorname{Exp}(2 \lambda)$.

