
Math 302.102 Fall 2010
A Function of a Random Variable

Let X be a continuous random variable with density function f . Sometimes we are interested
in a function of a random variable. For instance, we might view X as a physical measurement
and g(X) as that measurement in different units. We’ve seen that E[g(X)], the mean or
expected value of g(X), is given by

E[g(X)] =

∫ ∞
−∞

g(x)f(x) dx

(which is sometimes called the law of the unconscious statistician). However, as we will now
see, in many cases we can actually determine the distribution of g(X).

Remark. The pivot method is a technique from statistical inference for constructing confi-
dence intervals that requires one to do exactly this.

The basic technique is to determine the distribution function of Y = g(X) from first princi-
ples. The density function of Y = g(X) can then be found by differentiation.

Example. Suppose that X ∼ Exp(λ). Determine the distribution/density of Y = eX .

Solution. If X ∼ Exp(λ), then fX(x) = λe−λx for x ≥ 0. Let Y = eX . By definition,

FY (y) = P {Y ≤ y} = P
{
eX ≤ y

}
= P {X ≤ log y} =

∫ log y

−∞
fX(x) dx =

∫ log y

0

λe−λx dx

= −e−λx
∣∣∣∣log y
0

= 1− e−λ log y

= 1− y−λ

provided that y ≥ 1. (Why is this the restriction on y? If x ≥ 0 and y = ex, then y ≥ e0 = 1.)
We now find fY (y).

• Method #1: direct differentiation of the distribution function

fY (y) =
d

dy
FY (y) =

d

dy
(1− y−λ) = λy−1−λ.

• Method #2: “symbolic” differentiation of the distribution function

fY (y) =
d

dy
FY (y) =

d

dy

∫ log y

0

λe−λx dx = λe−λ log y · d

dy
(log y) by the chain rule

= λy−λ · 1

y
as above.

Remark. We put subscripts on the density functions to keep track of the random variables.
That is, fX is the density function of X and fY is the density function of Y . We cannot
use just f here since there are two different density functions being considered. The same is
true for the distribution functions.



Remark. We observe that Method #2 can be generalized to any strictly increasing function
g provided that its derivative g′ exists.

Theorem and Proof. Suppose that X is a continuous random variables with density fX
and g is a strictly increasing, differentiable function. If Y = g(X), then

• FY (y) = P {Y ≤ y} = P {g(X) ≤ y} = P {X ≤ g−1(y)} = FX(g−1(y)), and

• fY (y) =
d

dy
FY (y) =

d

dy

∫ g−1(y)

−∞
fX(x) dx = fX(g−1(y)) · d

dy
g−1(y).

On the other hand, if g is strictly decreasing, then

fY (y) = −fX(g−1(y)) · d

dy
g−1(y).

(The extra minus sign is needed since d
dy
g−1(y) < 0.)

Summary. If g is strictly monotone, then

fY (y) = fX(g−1(y)) ·
∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ .
Remark. When you need to change variables, don’t try to just plug into a memorized
formula. Instead, follow either “Method #1” or “Method #2” directly.

Example. Suppose that X is a continuous random variable with density

f(x) =
3

7
x2

for 1 ≤ x ≤ 2. Determine the density function of Y = 1/X2.

Solution. By definition,

FY (y) = P {Y ≤ y} = P
{

1/X2 ≤ y
}

= P
{

1/y ≤ X2
}

= P
{
X ≥ y−1/2

}
=

∫ ∞
y−1/2

f(x) dx

=

∫ 2

y−1/2

3

7
x2 dx

=
8

7
− y−3/2

7

provided that 1/4 ≤ y ≤ 1. Hence,

FY (y) =


0, y < 1/4,

8

7
− y−3/2

7
, 1/4 ≤ y ≤ 1,

1, y ≥ 1

and so

fY (y) =
d

dy

(
8

7
− y−3/2

7

)
=

3

14
y−5/2

for 1/4 ≤ y ≤ 1.


