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Suppose that X is a continuous random variable with density f . In applications, X might
represent (i) the payout of a bet on a chance experiment, (ii) the lifetime of a manufactured
component of a physical system such as a lightbulb, circuit board, battery, crystal oscillator,
or catalytic converter, (iii) the value of a given stock at some fixed time in the future, (iv)
a temperature, pressure, displacement, mass, or some other measurable characteristic of a
physical body subject to random interactions with the surrounding medium, or (v) etc. We
already know how to compute probabilities associated with X, namely

P {X ∈ B} =

∫
B

f(x) dx

for any B ⊆ R.

The moments of a random variable are a useful way to summarize that random variable. By
definition, the kth moment of X is defined as

E(Xk) =

∫ ∞
−∞

xkf(x) dx

for k = 1, 2, 3, . . ..

The first moment, E(X) = E(X1), is also called the expected value (or expectation or mean)
of X. It is the continuous analogue of a weighted average. That is, since the density
function of X can be interpreted as the infinitesmal likelihood of a particular value of X,
the “continuous weighted average” of X is simply∫ ∞

−∞
xf(x) dx = E(X).

Perhaps it is better to just think of E(X) as the average payout of a bet, or the average
lifetime of a manufactured component, or the average etc., when X has density f .

Remark. Since the expected value of X is defined as a definite integral, it is just a number.
As such, we know that P {X = E(X)} = 0 (since the probability that a continuous random
variable takes on any fixed value is 0). However, we will soon learn a way to estimate the
deviations of X from E(X).

The use of the word moment in probability is taken (loosely) from physics where it refers to
many different concepts including moment of force or moment of inertia. It has also been
used historically in mathematics to describe the “shape” of a set of points.

The importance of the higher order moments (k = 2, 3, . . .) is clear when we consider the
kth central moment of X denoted by µk and defined as follows. Set µ1 = µ = E(X) and for
k = 2, 3, . . . define

µk = E
(
[X − E(X)]k

)
= E

(
[X − µ]k

)
=

∫ ∞
−∞

(x− µ)kf(x) dx.

The second central moment is called the variance and it a measure of how much a random
variable deviates from its expected value.



Often, we write
σ2 = Var(X) = µ2

for the variance. The square root of the variance is called the standard deviation. We
sometimes write

σ = SD(X) =
√

Var(X)

for the standard deviation. (In physics, the second central moment is called the moment of
inertia about the centre of mass.)

The normalized third central moment is called the skewness and is defined by

γ1 =
µ3

σ3
=

µ3

µ
3/2
2

.

It is a measure of asymmetry (or skewness) of the density/distribution of the random variable.

The normalized fourth central moment is called the kurtosis and is defined by

γ2 =
µ4

σ4
=
µ4

µ2
2

.

It is a measure of the peakedness of the density/distribution of the random variable.

Remark. None of the other higher (normalized/central) moments are given special names.
For Math 302, we will be concerned almost entirely with the expected value (i.e., the first
moment or mean) and the variance (i.e., the second central moment). The primary uses of
the skewness and kurtosis are in statistics in the context of parametric tests. The method
of moments is a somewhat useful technique for estimating parameters in a statistical model
whereby a system of equations involving the population moments and the sample moments
is solved for the unknown parameters.

The moment generating function of X is the function m : R→ R defined by

m(t) = E(etX) =

∫ ∞
−∞

etxf(x) dx.

It has the property that the kth moment of X can be determined by evaluating the kth
derivative of the moment generating function at t = 0. That is,

m(k)(0) =
dk

dtk
m(t)

∣∣∣∣
t=0

= E(Xk).

The proof proceeds as follows. By interchanging the derivative and the integral, we find

dk

dtk
m(t) =

dk

dtk

∫ ∞
−∞

etxf(x) dx =

∫ ∞
−∞

[
dk

dtk
etxf(x)

]
dx =

∫ ∞
−∞

f(x)

[
dk

dtk
etx
]

dx

=

∫ ∞
−∞

xketxf(x) dx.

Thus, evaluating at t = 0 gives

dk

dtk
m(t)

∣∣∣∣
t=0

=

∫ ∞
−∞

xke0·xf(x) dx =

∫ ∞
−∞

xkf(x) dx = E(Xk)

as required.


