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Recall that we can think of a random variable as the payout of a bet made on a chance
experiment. Formally, a random variable is a function from the sample space S to the real
numbers R. If the chance experiment produces the outcome ω ∈ S, then the value of the
random variable is X(ω). When analyzing random variables, we do not always compute
probabilities associated with the outcomes. Instead, we compute probabilities associated
with the values of the random variable.

Two particularly important classes of random variables are the following. We say that X is
a continuous random variable if there exists a non-negative function f such that

P {X ∈ B} =

∫
B

f(x) dx

for any B ⊆ R. We call f the density function of X.

We say that X is a discrete random variable if X can take on at most countably many values.
In this case, we can characterize X by the values

P {X = k}

for k = . . . ,−2,−1, 0, 1, 2, . . .. Some people might call the function p(k) = P {X = k} the
probability mass function of X.

Remark. The important distinction between continuous and discrete random variables is
that discrete random variables can assign strictly positive probability to individual points.
For example, if X is binomial with n = 5 trials and p = 0.3 success probability, then

P {X = 1} =

(
5

1

)
(0.3)1(0.7)4 = 0.36015.

However, if X is a continuous random variable, then

P {X = k} =

∫ k

k

f(x) dx = 0

for any k. In other words, there is no area under a density curve at a single point; the area
of a rectangle of width 0 is 0. For example, if X is an exponential random variable with
parameter λ = 2, then

P {X = 1} =

∫ 1

1

2e−2x dx = 0.

It is often the case in applications that we are interested in the average payout of a bet. If
X is a discrete random variable, then the expected value of X (also called the expectation of
X or the average value of X) is simply a weighted average of the possible values of X; that
is, the possible values of X weighted by their corresponding probabilities. Formally, if X is
discrete, then the expected value of X is given by

E(X) =
∞∑

k=−∞

kP {X = k} .



However, if X is a continuous random variable, then the expected value of X is given by

E(X) =

∫ ∞
−∞

xf(x) dx.

Remark. It is perhaps worth noting that the expected value of X exists as a real number
provided the sum/integral defining E(X) converges absolutely; that is, E(X) is well-defined
provided E(|X|) <∞.

Example. If X ∼ Exp(λ) so that f(x) = λe−λx for x ≥ 0, then

E(X) =

∫ ∞
−∞

xf(x) dx =

∫ ∞
0

λxe−λx dx =
1

λ

∫ ∞
0

ue−u du =
1

λ

(skipping the details of the last step which uses integration-by-parts).

Example. If X ∼ Gamma(α, λ) so that

f(x) =
λα

Γ(α)
xα−1e−λx

for x ≥ 0, then

E(X) =

∫ ∞
−∞

xf(x) dx =

∫ ∞
0

x
λα

Γ(α)
xα−1e−λx dx =

λα

Γ(α)

∫ ∞
0

xαe−λx dx =
λα

Γ(α)
·Γ(α + 1)

λα+1
=
α

λ

(using properties of the Gamma function).

The law of total probability for continuous random variables

Suppose that the continuous random variables X and Y are independent. If the density of
X is fX(x) and the density of Y is fY (y), then we can compute P {X > Y } by conditioning
on the value of Y and using the continuous version of the law of total probability. That is,

P {X > Y } =

∫ ∞
−∞

P {X > Y |Y = y} fY (y) dy =

∫ ∞
−∞

P {X > y} fY (y) dy

where

P {X > y} =

∫ ∞
y

fX(x) dx.

In other words,

P {X > Y } =

∫ ∞
−∞

∫ ∞
y

fX(x)fY (y) dx dy.

Equivalently, we can condition on the value of X in which case we find

P {X > Y } =

∫ ∞
−∞

P {X > Y |X = x} fX(x) dx =

∫ ∞
−∞

P {Y < x} fX(x) dx

=

∫ ∞
−∞

[∫ x

−∞
fY (y) dy

]
fX(x) dx

=

∫ ∞
−∞

∫ x

−∞
fY (y)fX(x) dy dx.


