Math 302.102 Fall 2010
Solutions to Prerequisite Review Exercises

Single-Variable Calculus

1. Using a substitution with $u=2 x$ gives

$$
\int_{0}^{\infty} e^{-2 x} \mathrm{~d} x=-\left.\frac{1}{2} e^{-2 x}\right|_{0} ^{\infty}=\frac{1}{2} .
$$

2. Using parts with $u=x$ and $\mathrm{d} v=e^{-2 x} \mathrm{~d} x$ gives

$$
\int_{0}^{\infty} x e^{-2 x} \mathrm{~d} x=-\left.\frac{1}{2} x e^{-2 x}\right|_{0} ^{\infty}+\frac{1}{2} \int_{0}^{\infty} e^{-2 x} \mathrm{~d} x=0+\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} .
$$

3. Using parts with $u=x^{2}$ and $\mathrm{d} v=e^{-2 x} \mathrm{~d} x$ gives

$$
\int_{0}^{\infty} x^{2} e^{-2 x} \mathrm{~d} x=-\left.\frac{1}{2} x^{2} e^{-2 x}\right|_{0} ^{\infty}+\int_{0}^{\infty} x e^{-2 x} \mathrm{~d} x=0+\frac{1}{4}=\frac{1}{4} .
$$

4. Using parts with $u=x^{3}$ and $\mathrm{d} v=e^{-2 x} \mathrm{~d} x$ gives

$$
\int_{0}^{\infty} x^{3} e^{-2 x} \mathrm{~d} x=-\left.\frac{1}{2} x^{3} e^{-2 x}\right|_{0} ^{\infty}+\frac{3}{2} \int_{0}^{\infty} x^{2} e^{-2 x} \mathrm{~d} x=0+\frac{3}{2} \cdot \frac{1}{4}=\frac{3}{8}
$$

5. Using a substitution with $u=x^{1 / 3}$ gives

$$
\int_{0}^{\infty} x^{-2 / 3} e^{-x^{1 / 3}} \mathrm{~d} x=\int_{0}^{\infty} 3 e^{-u} \mathrm{~d} u=-\left.3 e^{-u}\right|_{0} ^{\infty}=3
$$

6. Using a substitution with $u=x^{1 / a}$ gives

$$
\int_{0}^{\infty} x^{1 / a-1} e^{-x^{1 / a}} \mathrm{~d} x=\int_{0}^{\infty} a e^{-u} \mathrm{~d} u=-\left.a e^{-u}\right|_{0} ^{\infty}=a
$$

7. Using a substitution with $u=x^{1 / 3}$ gives

$$
\int_{0}^{\infty} x^{1 / 3} e^{-2 x^{1 / 3}} \mathrm{~d} x=\int_{0}^{\infty} 3 u^{3} e^{-2 u} \mathrm{~d} u=3 \cdot \frac{3}{8}=\frac{9}{8} .
$$

8. Using a substitution with $u=x^{2}$ gives

$$
\int_{0}^{\infty} x e^{-x^{2}} \mathrm{~d} x=\frac{1}{2} \int_{0}^{\infty} e^{-u} \mathrm{~d} u=-\left.\frac{1}{2} e^{-u}\right|_{0} ^{\infty}=\frac{1}{2}
$$

9. Using a substitution with $u=a x^{2}$ gives

$$
\int_{0}^{\infty} x e^{-a x^{2}} \mathrm{~d} x=\frac{1}{2 a} \int_{0}^{\infty} e^{-u} \mathrm{~d} u=-\left.\frac{1}{2 a} e^{-u}\right|_{0} ^{\infty}=\frac{1}{2 a}
$$

10. We will discuss this exercise in detail in class later this term.
11. We will discuss this exercise in detail in class later this term.
12. Using a substitution with $u=1-x$ gives

$$
\int_{0}^{1} x(1-x)^{3} \mathrm{~d} x=-\int_{1}^{0}(1-u) u^{3} \mathrm{~d} u=\int_{0}^{1} u^{3}(1-u) \mathrm{d} u=\int_{0}^{1} u^{3}-u^{4} \mathrm{~d} u=\frac{1}{4}-\frac{1}{5}=\frac{1}{20} .
$$

13. Using a substitution with $u=1-x$ gives

$$
\int_{0}^{1} x^{2}(1-x)^{3} \mathrm{~d} x=-\int_{1}^{0}(1-u)^{2} u^{3} \mathrm{~d} u=\int_{0}^{1} u^{3}(1-u)^{2} \mathrm{~d} u=\int_{0}^{1} u^{3}-2 u^{4}+u^{5} \mathrm{~d} u=\frac{1}{4}-\frac{2}{5}+\frac{1}{6}=\frac{1}{60} .
$$

14. Recognizing the antiderivative directly gives

$$
\int_{-\infty}^{\infty} \frac{1}{x^{2}+1} \mathrm{~d} x=\left.\arctan (x)\right|_{-\infty} ^{\infty}=\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=\pi
$$

15. Using a substitution with $u=x^{2}+1$ gives

$$
\int_{0}^{\infty} \frac{x}{x^{2}+1} \mathrm{~d} x=\int_{1}^{\infty} \frac{1}{2 u} \mathrm{~d} u=\left.\frac{1}{2} \log |u|\right|_{1} ^{\infty}=\infty
$$

Thus, the value of this integral does not exist as a real number.
16. By writing
$\int_{-\infty}^{\infty} \frac{x}{x^{2}+1} \mathrm{~d} x=\int_{0}^{\infty} \frac{x}{x^{2}+1} \mathrm{~d} x+\int_{-\infty}^{0} \frac{x}{x^{2}+1} \mathrm{~d} x=\int_{0}^{\infty} \frac{x}{x^{2}+1} \mathrm{~d} x-\int_{0}^{\infty} \frac{x}{x^{2}+1} \mathrm{~d} x=\infty-\infty$,
we see that the value of this integral does not exist. (Recall that $\infty-\infty$ is a so-called indeterminant form). Note that the integrand is an odd function, and so we might be tempted to say that the integral of an odd function over a symmetric interval is 0 . While this fact is true for symmetric finite intervals $(-a, a)$, we need to be careful when the symmetric interval is $(-\infty, \infty)$. With this particular integral there is an infinite area above the axis to the right of 0 as well as an infinite area below the axis to the left of 0 . Again, we might be tempted to say that these areas are equal and so they cancel out giving a value of 0 to the integral. But ∞ is not a real number and cannot be manipulated like that. We cannot say that $\infty-\infty=0$. Thus, we must conclude that the value of this integral does not exist.
17. Recognizing the antiderivative directly gives

$$
\int_{a}^{\infty} \frac{1}{x^{3}} \mathrm{~d} x=-\left.\frac{1}{2} x^{-2}\right|_{a} ^{\infty}=\frac{1}{2 a^{2}}
$$

18. Recognizing the antiderivative directly gives

$$
\int_{a}^{\infty} \frac{1}{x^{b}} \mathrm{~d} x=-\left.\frac{1}{b-1} x^{-(b-1)}\right|_{a} ^{\infty}=\frac{a^{1-b}}{b-1}
$$

Multi-Variable Calculus

1. If $f(x, y)=x^{2}$ and $R=\{0<x<y<1\}$, then

$$
\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{x}^{1} x^{2} \mathrm{~d} y \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\int_{x}^{1} 1 \mathrm{~d} y\right) \mathrm{d} x=\int_{0}^{1} x^{2}(1-x) \mathrm{d} x=\frac{1}{12}
$$

2. If $f(x, y)=x^{2}$ and $R=\{0<y<x<1\}$, then

$$
\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{x} x^{2} \mathrm{~d} y \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\int_{0}^{x} 1 \mathrm{~d} y\right) \mathrm{d} x=\int_{0}^{1} x^{2} \cdot x \mathrm{~d} x=\frac{1}{4}
$$

3. If $f(x, y)=y^{2}$ and $R=\{0<x<y<1\}$, then

$$
\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{y} y^{2} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{1} y^{2}\left(\int_{0}^{y} 1 \mathrm{~d} x\right) \mathrm{d} y=\int_{0}^{1} y^{2} \cdot y \mathrm{~d} x=\frac{1}{4} .
$$

4. If $f(x, y)=x y$ and $R=\{0<y<x<1\}$, then

$$
\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{x} x y \mathrm{~d} y \mathrm{~d} x=\int_{0}^{1} x\left(\int_{0}^{x} y \mathrm{~d} y\right) \mathrm{d} x=\int_{0}^{1} x \cdot \frac{1}{2} x^{2} \mathrm{~d} x=\frac{1}{8} .
$$

5. If $f(x, y)=x+y$ and $R=\{0<x<y<1\}$, then

$$
\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{y}(x+y) \mathrm{d} y \mathrm{~d} x=\left.\int_{0}^{1}\left(\frac{1}{2} x^{2}+x y\right)\right|_{x=0} ^{x=y} \mathrm{~d} x=\int_{0}^{1} \frac{1}{2} y^{2}+y^{2} \mathrm{~d} x=\frac{1}{2} .
$$

6. If $f(x, y)=e^{-2 y}$ and $R=\{0<x<2 y\}$, then

$$
\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{\infty} \int_{0}^{2 y} e^{-2 y} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{\infty} 2 y e^{-2 y} \mathrm{~d} y=\frac{1}{2}
$$

7. If $f(x, y)=\sqrt{x^{2}+y^{2}}$ and $R=\left\{x^{2}+y^{2} \leq 1\right\}$, then making the change-of-variables to polar coordinates via $x=r \cos \theta, y=r \sin \theta, \mathrm{~d} x \mathrm{~d} y=r \mathrm{~d} r \mathrm{~d} \theta$ gives

$$
\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{2 \pi} \int_{0}^{1} r \cdot r \mathrm{~d} r \mathrm{~d} \theta=2 \pi \int_{0}^{1} r^{2} \mathrm{~d} r=\frac{2}{3} \pi .
$$

Note that R describes the region inside the circle of radius 1 centred at the origin. Thus, the limits for r and θ are $0 \leq r \leq 1$ and $0 \leq \theta<2 \pi$. Furthermore, in polar coordinates, $\sqrt{x^{2}+y^{2}}=\sqrt{r^{2}}=r$.
8. If $f(x, y)=x y$ and $R=\left\{x^{2}+y^{2} \leq 1, x>0, y>0\right\}$, then

$$
\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{\pi / 2} r \cos \theta \cdot r \sin \theta \cdot r \mathrm{~d} r \mathrm{~d} \theta=\left(\int_{0}^{1} r^{3} \mathrm{~d} r\right) \cdot\left(\int_{0}^{\pi / 2} \frac{1}{2} \sin (2 \theta) \mathrm{d} \theta\right)=\frac{1}{8}
$$

Note that R describes the region inside the first quadrant of the circle of radius 1 centred at the origin. Thus, the limits for r and θ are $0 \leq r \leq 1$ and $0<\theta<\pi / 2$. Furthermore, in polar coordinates, $x y=r \cos \theta \cdot r \sin \theta=\frac{r^{2}}{2} \sin (2 \theta)$.

Some Sums

1. Recall that if r satisfies $-1<r<1$, then

$$
\sum_{j=0}^{\infty} r^{j}=\frac{1}{1-r}
$$

gives the value of the geometric series. Thus,

$$
\sum_{j=0}^{\infty} 3^{-j}=\sum_{j=0}^{\infty}(1 / 3)^{j}=\frac{1}{1-1 / 3}=\frac{3}{2}
$$

2. It is a fact that if r satisfies $-1<r<1$, then

$$
\sum_{j=1}^{\infty} j r^{j}=\frac{r}{(1-r)^{2}}
$$

Here is how you prove this fact. Observe that

$$
\frac{\mathrm{d}}{\mathrm{~d} r} r^{j}=j r^{j-1}
$$

Therefore,

$$
\sum_{j=1}^{\infty} j r^{j}=r \sum_{j=1}^{\infty} j r^{j-1}=r \sum_{j=1}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} r} r^{j}
$$

If we now interchange the derivative and the summation, then we get

$$
\sum_{j=1}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} r} r^{j}=\frac{\mathrm{d}}{\mathrm{~d} r} \sum_{j=1}^{\infty} r^{j}
$$

However, if we notice that

$$
\sum_{j=0}^{\infty} r^{j}=r^{0}+\sum_{j=1}^{\infty} r^{j}=1+\sum_{j=1}^{\infty} r^{j}
$$

then we conclude that

$$
\sum_{j=1}^{\infty} r^{j}=\sum_{j=0}^{\infty} r^{j}-1=\frac{1}{1-r}-1=\frac{r}{1-r}
$$

Putting this back in to the earlier expressions gives

$$
\sum_{j=1}^{\infty} j r^{j}=r \cdot \frac{\mathrm{~d}}{\mathrm{~d} r} \sum_{j=1}^{\infty} r^{j}=r \cdot \frac{\mathrm{~d}}{\mathrm{~d} r}\left(\frac{r}{1-r}\right)=r \cdot \frac{1}{(1-r)^{2}}=\frac{r}{(1-r)^{2}}
$$

Hence, we find

$$
\sum_{j=1}^{\infty} j 3^{-j}=\sum_{j=1}^{\infty} j(1 / 3)^{j}=\frac{1 / 3}{(1-1 / 3)^{2}}=\frac{3}{4}
$$

3. Recall that if $-\infty<x<\infty$, then the power series (i.e., Taylor series at 0 or Maclaurin series) for e^{x} is

$$
e^{x}=\sum_{j=0}^{\infty} \frac{x^{j}}{j!}
$$

Thus,

$$
\sum_{j=0}^{\infty} \frac{3^{-j}}{j!}=\sum_{j=0}^{\infty} \frac{(1 / 3)^{j}}{j!}=e^{1 / 3}
$$

