
Math 302.102 Fall 2010
A Confidence Interval for the Mean of a Normal Population with Known Variance

The purpose of this handout is to guide you through a rigorous derivation of the formula for
a confidence interval for the mean µ from a normally distributed population with a known
variance σ2. The formula that appears in the very last part of this handout is always stated
without any justification in elementary statistics class. Now you can justify it!

Throughout this handout, suppose that X ∼ N (0, 1) so that the density function of X is

fX(x) =
1√
2π
e−x

2/2

for −∞ < x <∞.

Problem 1. Compute E(X) =

∫ ∞
−∞

xfX(x) dx. Hint : use symmetry.

Problem 2. Compute E(X2) =

∫ ∞
−∞

x2fX(x) dx. Hint : use integration-by-parts with u = x

and dv = xe−x
2/2 dx, and the fact that a normal density function integrates to 1.

Problem 3. Compute Var(X).

Problem 4. Compute mX(t) = E[etX ], the moment generating function of X. Hint : com-
plete the square in the exponent, manipulate it a bit, and use the fact that a normal density
function integrates to 1.

For the next three problems, suppose that Y = σX+µ where σ > 0 and µ ∈ R are constant.

Problem 5. Compute E(Y ) and Var(Y ).

Problem 6. Determine the density function of Y and conclude that Y ∼ N (µ, σ2). Note
that this justifies the statement “Y is normally distributed with mean µ and variance σ2 if
and only if Y ∼ N (µ, σ2).”

Problem 7. Verify that the moment generating function of Y is mY (t) = eµt+σ
2t2/2.

Problem 8. As a converse to the previous three problems, suppose that Y ∼ N (µ, σ2) and
let

Z =
Y − µ
σ

.

Verify that Z ∼ N (0, 1).

Problem 9. Suppose that X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) are independent random

variables. Let Y = X1 + X2 and determine the moment generating function of Y . As a
consequence of Problem 7, this proves that X1 +X2 ∼ N (µ1 + µ2, σ

2
1 + σ2

2).

Problem 10. As an extension of the previous problem, show that if X1, X2, . . . , Xn are
independent with Xi ∼ N (µi, σ

2
i ), then

X1 +X2 + · · ·+Xn ∼ N (µ1 + µ2 + · · ·+ µn, σ
2
1 + σ2

2 + · · ·+ σ2
n).

In particular, if X1, X2, . . . , Xn are iid with Xi ∼ N (µ, σ2), then

X1 +X2 + · · ·+Xn ∼ N (nµ, nσ2).



Problem 11. Suppose that X1, X2, . . . , Xn are iid with Xi ∼ N (µ, σ2), and let

X =
X1 +X2 + · · ·+Xn

n
.

Verify that X ∼ N (µ, σ2/n) and therefore conclude from Problem 8 that

X − µ
σ/
√
n
∼ N (0, 1).

At this point we have all of the results needed to derive the formula for a confidence interval.
Suppose that Z ∼ N (0, 1) and assume that zα/2 is chosen so that

P
{
−zα/2 ≤ Z ≤ zα/2

}
= 1− α.

For instance, from a table of normal probabilities we see that z0.025 = 1.96 since

P {−1.96 ≤ Z ≤ 1.96} = 0.95

and z0.05 = 1.645 since
P {−1.645 ≤ Z ≤ 1.645} = 0.90.

Hence, since

Z =
X − µ
σ/
√
n
∼ N (0, 1)

we conclude that

P

{
−zα/2 ≤

X − µ
σ/
√
n
≤ zα/2

}
= 1− α.

Solving for µ implies that

P

{
X − zα/2

σ√
n
≤ µ ≤ X + zα/2

σ√
n

}
= 1− α.

As a result of this probabilistic statement, we say that[
X − zα/2

σ√
n
, X + zα/2

σ√
n

]
is a 100(1 − α)% confidence interval for µ (or a confidence interval for µ with coverage
probability 1− α).



Solutions

Problem 1. Observe that

E(X) =

∫ ∞
−∞

xfX(x) dx =

∫ ∞
−∞

x · 1√
2π
e−x

2/2 dx = 0

since the integrand is odd.

Problem 2. Since E(X) = 0 from the previous problem, we see that

Var(X) = E(X2)− [E(X)]2 = E(X2) =

∫ ∞
−∞

x2fX(x) dx =

∫ ∞
−∞

x2 · 1√
2π
e−x

2/2 dx.

To evaluate ∫ ∞
−∞

x2e−x
2/2 dx

use integration-by-parts with u = x and dv = xe−x
2/2 dx so that∫ ∞

−∞
x2e−x

2/2 dx = −xe−x2
∣∣∣∣∞
−∞

+

∫ ∞
−∞

e−x
2/2 dx =

∫ ∞
−∞

e−x
2/2 dx.

If we multiply by 1/
√

2π, then using the fact that the density function of a N (0, 1) random
variable integrates to 1, we conclude

Var(X) =
1√
2π

∫ ∞
−∞

x2e−x
2/2 dx =

1√
2π

∫ ∞
−∞

e−x
2/2 dx = 1.

Problem 3. We find Var(X) = E(X2)− [E(X)]2 = 1− 02 = 1.

Problem 4. By definition,

mX(t) = E(etX) =

∫ ∞
−∞

etxfX(x) dx =

∫ ∞
−∞

etx · 1√
2π
e−x

2/2 dx =
1√
2π

∫ ∞
−∞

etx−x
2/2 dx.

Now, we complete the square in the exponent; that is, we write

tx− x
2

2
= −1

2
(x2− 2tx) = −1

2
(x2− 2tx+ t2− t2) = −1

2
(x2− 2tx+ t2) +

t2

2
= −(x− t)2

2
+
t2

2

so that

1√
2π

∫ ∞
−∞

etx−x
2/2 dx =

1√
2π

∫ ∞
−∞

e−
(x−t)2

2
+ t2

2 dx = et
2/2 · 1√

2π

∫ ∞
−∞

e−(x−t)
2/2 dx.

However, if we substitute u = x− t, then

1√
2π

∫ ∞
−∞

e−
(x−t)2

2 dx =
1√
2π

∫ ∞
−∞

e−u
2/2 du = 1

(since it is the integral of the density function of a N (0, 1) random variable), and so we
conclude

mX(t) = et
2/2.



Problem 5. If Y = σX + µ, then

E(Y ) = E(σX + µ) = σE(X) + µ = 0 + µ = µ

and
Var(Y ) = Var(σX + µ) = Var(σX) = σ2 Var(X) = σ2.

Problem 6. If Y = σX + µ, then for any y ∈ R, the distribution function of Y is

FY (y) = P {Y ≤ y} = P {σX + µ ≤ y} = P

{
X ≤ y − µ

σ

}
=

∫ y−µ
σ

−∞
fX(x) dx

so that

fY (y) =
d

dy
FY (y) = fX

(
y − µ
σ

)
· d

dy

(
y − µ
σ

)
=

1

σ
√

2π
exp

{
−(y − µ)2

2σ2

}
.

Problem 7. If Y = σX + µ, then

mY (t) = E[etY ] = E[et(σX+µ)] = E[etµeσtX ] = etµE[eσtX ] = etµmX(σt) = etµe(σt)
2/2 = etµ+σ

2t2/2.

Problem 8. Since Y ∼ N (µ, σ2) and

Z =
Y − µ
σ

=
1

σ
Y − µ

σ
,

then the moment generating function of Z is

mZ(t) = E[etZ ] = E
[
et(

1
σ
Y−µ

σ )
]

= e−tµ/σmY (t/σ) = e−tµ/σetµ/σ+σ
2t2/(2σ2) = et

2/2

which is the moment generating function of a N (0, 1) random variable. Thus, Z ∼ N (0, 1).

Problem 9. If Xi ∼ N (µi, σ
2
i ), then from Problem 7 we know

mXi(t) = E(etXi) = etµi+σ
2
i t

2/2.

Therefore, the mgf of X1 +X2 is

mX1+X2(t) = E[et(X1+X2)] = E[etX1etX2 ] = E(etX1)E(etX2) = etµ1+σ
2
1t

2/2etµ1+σ
2
1t

2/2

= et(µ1+µ2)+(σ2
1+σ

2
2)t

2/2

which we recognize as the mgf of a N (µ1 + µ2, σ
2
1 + σ2

2) random variable.

Problem 10. The mgf of X1 + · · ·+Xn is

mX1+···+Xn(t) = E[et(X1+···+Xn)] = E[etX1 · · · etXn ] = E(etX1) · · ·E(etXn)

= etµ1+σ
2
1t

2/2 · · · etµn+σ2
nt

2/2

= et(µ1+···+µn)+(σ2
1+···+σ2

n)t
2/2

which we recognize as the mgf of a N (µ1 + · · ·+ µn, σ
2
1 + · · ·+ σ2

n) random variable.



Problem 11. We know from the previous problem that if X1, . . . , Xn are iid N (µ, σ2), then
the mgf of X1 + · · ·+Xn is

mX1+···+Xn(t) = enµt+nσ
2t2/2.

Therefore, the mgf of X is

mX(t) = E(etX) = E[e
t
n
(X1+···+Xn)] = mX1+···+Xn(t/n) = enµ(t/n)+nσ

2(t/n)2/2 = eµt+σ
2t2/(2n)

which we recognize as the mgf of a N (µ, σ2/n) random variable. We can now conclude from
Problem 8 that

X − µ
σ/
√
n
∼ N (0, 1).


