Math 302.102 Fall 2010
Tips for Using Bayes' Rule
In order to use Bayes' Rule correctly is is absolutely vital that you VERY CAREFULLY define appropriate events. In the statement of the problem, you will be given a conditional probability for one event given another event, and you will want to determine a conditional probability for those events swapped. We will call these events A and B_{1} so that you are given the conditional probability

$$
\mathbf{P}\left\{A \mid B_{1}\right\}
$$

You want to determine

$$
\mathbf{P}\left\{B_{1} \mid A\right\}
$$

Write down the basic version of Bayes' Rule using the fact that $A \cap B_{1}=B_{1} \cap A$; that is, $\mathbf{P}\left\{A \cap B_{1}\right\}=\mathbf{P}\left\{B_{1} \cap A\right\}$ and so

$$
\mathbf{P}\left\{A \mid B_{1}\right\} \mathbf{P}\left\{B_{1}\right\}=\mathbf{P}\left\{B_{1} \mid A\right\} \mathbf{P}\{A\}
$$

implying that

$$
\begin{equation*}
\mathbf{P}\left\{B_{1} \mid A\right\}=\frac{\mathbf{P}\left\{A \mid B_{1}\right\} \mathbf{P}\left\{B_{1}\right\}}{\mathbf{P}\{A\}} \tag{*}
\end{equation*}
$$

Hence, we need to determine the values of the three probabilities on the right-side of the previous equation $(*)$. As noted already, in the statement of the problem you will be given $\mathbf{P}\left\{A \mid B_{1}\right\}$. You will also be given $\mathbf{P}\left\{B_{1}\right\}$, or at least enough information to determine it, such as $\mathbf{P}\left\{B_{1}^{c}\right\}$. The key step will be to use to law of total probability to determine $\mathbf{P}\{A\}$. Here is the key. You want to partition the sample space. You will need to use B_{1} for this The event B_{1} will typically give clues to how the other events B_{2}, \ldots, B_{n} should be defined. Schematically, you have the following.

Now consider the event A.

Now, write A as a disjoint union of the ways it can intersect the partition $B_{1}, B_{2}, \ldots, B_{n}$, namely

$$
\begin{aligned}
\mathbf{P}\{A\} & =\mathbf{P}\left\{A \cap B_{1}\right\}+\mathbf{P}\left\{A \cap B_{2}\right\}+\cdots+\mathbf{P}\left\{A \cap B_{n}\right\} \\
& =\mathbf{P}\left\{A \mid B_{1}\right\} \mathbf{P}\left\{B_{1}\right\}+\mathbf{P}\left\{A \mid B_{2}\right\} \mathbf{P}\left\{B_{2}\right\}+\cdots+\mathbf{P}\left\{A \mid B_{n}\right\} \mathbf{P}\left\{B_{n}\right\} .
\end{aligned}
$$

This is the Law of Total Probability. Notice that this expression includes the same term as the numerator, namely $\mathbf{P}\left\{A \mid B_{1}\right\} \mathbf{P}\left\{B_{1}\right\}$, but also includes more terms. Information about these other terms will also be given in the statement of the problem.

Remark. Problem \#3 on Assignment \#2 (the one about Elvis having a twin brother) can be solved by following this template precisely.

Remark. Sometimes a tree diagram is useful for figuring out the possible events to use for the partition B_{1}, \ldots, B_{n}.

