Math 302.102 Fall 2010
Practice Problems for Midterm \#2
Problem 1. Suppose that X is a continuous random variable with density function

$$
f(x)= \begin{cases}\frac{3}{7} x^{2}, & 1 \leq x \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Verify that f is, in fact, a legitimate density function.
(b) Compute $\mathbb{E}(X)$, the expected value (or mean or average) of X.
(c) Compute $\operatorname{Var}(X)$, the variance of X.
(d) Determine $F(x)$, the distribution function of X.
(e) Determine the median of X.

Problem 2. Suppose that X_{1} and X_{2} are independent continuous random variables each having common distribution function

$$
F(x)= \begin{cases}1-x e^{-x}-e^{-x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

(a) Determine $f(x)$, their common density function.
(b) Suppose that $Y_{1}=\min \left\{X_{1}, X_{2}\right\}$. Determine $f_{Y_{1}}(y)$, the density function of Y_{1}.
(c) Suppose that $Y_{2}=\max \left\{X_{1}, X_{2}\right\}$. Determine $f_{Y_{2}}(y)$, the density function of Y_{2}.
(d) Let $Z_{1}=Y_{1}^{3}$. Determine $f_{Z_{1}}(z)$, the density function of Z_{1}.
(e) Let $Z_{2}=\sqrt{Y_{2}}$. Determine $f_{Z_{2}}(z)$, the density function of Z_{2}.

Problem 3. Suppose that X and Y are independent, continuous random variables. If the density function of X is $f_{X}(x)=x e^{-x}$ for $x \geq 0$, and the density function of Y is $f_{Y}(y)=e^{-y}$ for $y \geq 0$, use the law of total probability to determine $\mathbf{P}\{X<Y\}$. Hint: It is probably easier to condition on the value of X.

Problem 4. Suppose that X is a continuous random variable with distribution function $F(x)$ and density function $f(x)$. Suppose further that f is continuous. Use the law of the unconscious statistician to show that $\mathbb{E}[F(X)]=1 / 2$.

Solutions

1. (a) Observe that $f(x) \geq 0$ for all $x \in \mathbb{R}$ and that

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{1}^{2} \frac{3}{7} x^{2} \mathrm{~d} x=\left.\frac{1}{7} x^{3}\right|_{1} ^{2}=\frac{8}{7}-\frac{1}{7}=1
$$

so that f is, in fact, a legitimate density.

1. (b) By definition,

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x=\int_{1}^{2} \frac{3}{7} x^{3} \mathrm{~d} x=\left.\frac{3}{28} x^{4}\right|_{1} ^{2}=\frac{3}{28}(16-1)=\frac{45}{28}
$$

1. (c) We find

$$
\mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) \mathrm{d} x=\int_{1}^{2} \frac{3}{7} x^{4} \mathrm{~d} x=\left.\frac{3}{35} x^{5}\right|_{1} ^{2}=\frac{3}{35}(32-1)=\frac{93}{35}
$$

so that

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}=\frac{93}{35}-\left[\frac{45}{28}\right]^{2}=\frac{2037}{27440} \doteq 0.0742347
$$

1. (d) By definition, if $1 \leq x \leq 2$, then

$$
F(x)=\int_{-\infty}^{x} f(u) \mathrm{d} u=\int_{1}^{x} \frac{3}{7} u^{2} \mathrm{~d} u=\left.\frac{1}{7} u^{3}\right|_{1} ^{x}=\frac{x^{3}}{7}-\frac{1}{7} .
$$

1. (e) The median of X is that value a for which

$$
\int_{-\infty}^{a} f(x) \mathrm{d} x=\frac{1}{2},
$$

or equivalently, that value of a for which $F(a)=\mathbf{P}\{X \leq a\}=1 / 2$. Thus, since we found F in (d), we conclude that a satisfies

$$
\frac{a^{3}}{7}-\frac{1}{7}=\frac{1}{2}
$$

and so

$$
a=\frac{9^{1 / 3}}{2^{1 / 3}} .
$$

2. (a) If $x>0$, then

$$
f(x)=\frac{\mathrm{d}}{\mathrm{~d} x} F(x)=x e^{-x} .
$$

2. (b) If $y>0$, then

$$
\begin{aligned}
\mathbf{P}\left\{Y_{1}>y\right\}=\mathbf{P}\left\{\min \left\{X_{1}, X_{2}\right\}>y\right\}=\mathbf{P}\left\{X_{1}>y, X_{2}>y\right\} & =\mathbf{P}\left\{X_{1}>y\right\} \mathbf{P}\left\{X_{2}>y\right\} \\
& =\left[1-\mathbf{P}\left\{X_{1} \leq y\right\}\right]\left[1-\mathbf{P}\left\{X_{2} \leq y\right\}\right] \\
& =[1-F(y)]^{2} \\
& =\left[y e^{-y}+e^{-y}\right]^{2} \\
& =(y+1)^{2} e^{-2 y}
\end{aligned}
$$

so that

$$
F_{Y_{1}}(y)=\mathbf{P}\left\{Y_{1} \leq y\right\}=1-\mathbf{P}\left\{Y_{1}>y\right\}=1-(y+1)^{2} e^{-2 y} .
$$

Thus,

$$
f_{Y_{1}}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y_{1}}(y)=2 y(y+1) e^{-2 y}
$$

2. (c) If $y>0$, then

$$
\begin{aligned}
F_{Y_{2}}(y)=\mathbf{P}\left\{Y_{2} \leq y\right\}=\mathbf{P}\left\{\max \left\{X_{1}, X_{2}\right\} \leq y\right\} & =\mathbf{P}\left\{X_{1} \leq y, X_{2} \leq y\right\} \\
& =\mathbf{P}\left\{X_{1} \leq y\right\} \mathbf{P}\left\{X_{2} \leq y\right\} \\
& =[F(y)]^{2} \\
& =\left[1-y e^{-y}-e^{-y}\right]^{2}
\end{aligned}
$$

Thus,

$$
f_{Y_{2}}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y_{2}}(y)=2 y e^{-y}\left(1-y e^{-y}-e^{-y}\right)
$$

2. (d) If $Z_{1}=Y_{1}^{3}$, then for $z>0$, the distribution function of Z_{1} is

$$
F_{Z_{1}}(z)=\mathbf{P}\left\{Z_{1} \leq z\right\}=\mathbf{P}\left\{Y_{1}^{3} \leq z\right\}=\mathbf{P}\left\{Y_{1} \leq z^{1 / 3}\right\}=\int_{-\infty}^{z^{1 / 3}} f_{Y_{1}}(y) \mathrm{d} y
$$

so by the fundamental theorem of calculus, if $z>0$, then
$f_{Z_{1}}(z)=\frac{\mathrm{d}}{\mathrm{d} z} F_{Z_{1}}(z)=f_{Y_{1}}\left(z^{1 / 3}\right) \frac{\mathrm{d}}{\mathrm{d} z} z^{1 / 3}=2 z^{1 / 3}\left(z^{1 / 3}+1\right) e^{-2 z^{1 / 3}} \cdot \frac{1}{3} z^{-2 / 3}=\frac{2}{3}\left(1+z^{-1 / 3}\right) e^{-2 z^{1 / 3}}$.
2. (e) If $Z_{2}=\sqrt{Y_{2}}$, then for $z>0$, the distribution function of Z_{2} is

$$
F_{Z_{2}}(z)=\mathbf{P}\left\{Z_{2} \leq z\right\}=\mathbf{P}\left\{\sqrt{Y_{2}} \leq z\right\}=\mathbf{P}\left\{Y_{2} \leq z^{2}\right\}=\int_{-\infty}^{z^{2}} f_{Y_{2}}(y) \mathrm{d} y
$$

so by the fundamental theorem of calculus, if $z>0$, then
$f_{Z_{2}}(z)=\frac{\mathrm{d}}{\mathrm{d} z} F_{Z_{2}}(z)=f_{Y_{2}}\left(z^{2}\right) \frac{\mathrm{d}}{\mathrm{d} z} z^{2}=2 z^{2} e^{-z^{2}}\left(1-z^{2} e^{-z^{2}}-e^{-z^{2}}\right) \cdot 2 z=4 z^{3} e^{-z^{2}}\left(1-z^{2} e^{-z^{2}}-e^{-z^{2}}\right)$.
3. By the law of total probability,

$$
\begin{aligned}
\mathbf{P}\{X<Y\}=\int_{-\infty}^{\infty} \mathbf{P}\{Y>x\} f_{X}(x) \mathrm{d} x & =\int_{0}^{\infty}\left[\int_{x}^{\infty} e^{-y} \mathrm{~d} y\right] x e^{-x} \mathrm{~d} x \\
& =\int_{0}^{\infty}\left[e^{-x}\right] x e^{-x} \mathrm{~d} x \\
& =\int_{0}^{\infty} x e^{-2 x} \mathrm{~d} x \\
& =\frac{1}{4} \int_{0}^{\infty} u e^{-u} \mathrm{~d} u \\
& =\frac{1}{4} .
\end{aligned}
$$

(Note that this final integral equals 1 since it represents the total area under a density curve - the density for X, in fact.)
4. By the law of the unconscious statistician, we have

$$
\mathbb{E}[F(X)]=\int_{-\infty}^{\infty} F(x) f(x) \mathrm{d} x
$$

If we make the change of variables $u=F(x)$, then $\mathrm{d} u=F^{\prime}(x) \mathrm{d} x$. But we know that $F^{\prime}=f$ so that $\mathrm{d} u=f(x) \mathrm{d} x$. Now for the limits of integration. Since $F(x) \rightarrow 1$ as $x \rightarrow \infty$ and since $F(x) \rightarrow 0$ as $x \rightarrow-\infty$, we find

$$
\int_{-\infty}^{\infty} F(x) f(x) \mathrm{d} x=\int_{0}^{1} u \mathrm{~d} u=\left.\frac{u^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}
$$

as required.

