
Math 302.102 Fall 2010
Extra Exercises

Exercise. Due to a fundamental problem of measurement, the location and position of a
very small particle cannot be predicted with certainty. (This is the Heisenberg uncertainty
principle.) The only thing that can be known is the particle’s wave function ψ and hence
a probability density function f(x) = |ψ(x)|2. This wave function ψ is a time-weighted
superposition of eigenfunctions (stationary states) of the Hamiltonian operator H, the in-
strument that observes total energy. For example, the state of lowest energy (the ground
state) of a quantum particle trapped in the potential free interval [0, 1] is ψ(x) =

√
2 sin(πx).

Determine the average position of a particle in this state.

Solution. Since the probability density function is the square of the wave function, we have

f(x) = |ψ(x)|2 =
[√

2 sin(πx)
]2

= 2 sin2(πx) for 0 ≤ x ≤ 1. Thus, the expected (or mean or
average) position of a particle in this state is∫ ∞

−∞
xf(x) dx = 2

∫ 1

0

x sin2(πx) dx = · · · = 1

2
.

(Use integration-by-parts to fill in the missing · · · step.)

Exercise. Recall that the Gamma function is defined for p > 0 by

Γ(p) =

∫ ∞
0

xp−1e−x dx.

Use integration-by-parts with to show that Γ(p+ 1) = pΓ(p). In other words, consider

Γ(p+ 1) =

∫ ∞
0

xpe−x dx (∗)

and use integration-by-parts once with u = xp and dv = e−x dv to show that Γ(p+1) = pΓ(p).
As a result, we can view the Gamma function as a natural generalization of the factorial
function. If k ≥ 1 is an integer, then by repeated use of (∗) implies

Γ(k + 1) = kΓ(k) = k(k − 1)Γ(k − 2) = k(k − 1)(k − 2)Γ(k − 3)

...

= k(k − 1)(k − 2) · · · 2Γ(1)

= k(k − 1)(k − 2) · · · 2 · 1
= k!

using the fact at the last step that

Γ(1) =

∫ ∞
0

e−x dx = 1.



Exercise. Suppose that X ∼ Beta(a, b). Show directly and quickly (without using moment
generating functions) that

E(Xk) =
Γ(a+ b)

Γ(a)Γ(b)
· Γ(a+ k)Γ(b)

Γ(a+ k + b)
=

Γ(a+ b)Γ(a+ k)

Γ(a)Γ(a+ k + b)
.

Note that you can now use the result (∗) of the earlier exercise to obtain a recursive formula
for E(Xk), namely

E(Xk) =
a+ k − 1

a+ b+ k − 1
E(Xk−1).

Exercise. Data on the life span T (in hours) of 60W hotel hallway lightbulbs provided by
General Electric is given below.

hours 400 500 600 700 800 900 1000 1100 1200 1300 1400
fail 0% 2% 5% 10% 20% 30% 50% 70% 80% 90% 95%

This is real data. Graph it. You will notice a striking similarity to the distribution function
of an exponential random variable with parameter λ. Based on the data, estimate λ. Super-
impose the graph of this distribution function with the estimated value of λ over the actual
data.

Exercise. Amateur astronomers have been obtaining spectacular photographs with small
telescopes fitted with inexpensive, low-pixel-count CCD cameras by taking multiple (n > 50)
exposures, then superimposing these exposures using photo manipulation software. Their
results are comparable to older photographs taken with huge telescopes. Why does this
technique produce such stunning photos? See the work of Thierry Legault online at

http://legault.perso.sfr.fr/

for many stunning examples.

Exercise. Many of the distributions that we study are named for the simple reason that
they are encountered frequently. In fact, many of them appear naturally. Suppose that
shots are being fired at the bullseye of a standard target marked in the usual way with
concentric circles. The errors in the horizontal and vertical distances are independent and
each normally distributed with mean 0 and variance σ2. Show that the error in terms of the
distance r from the centre of the bullseye has a Rayleigh distribution with

F (r) = 1− e−r2/2σ2

for r > 0. Formally, suppose that X ∼ N (0, σ2) and Y ∼ N (0, σ2) are independent. Let
R =

√
X2 + Y 2 and show that the distribution function of R is F (r).


