
Math 302.102 Fall 2010
The Law of Large Numbers

The law of large numbers, sometimes called the law of averages, is precisely the result that
casinos rely on in order to make money! The basic idea is that the sample average is a very
good approximation to the population average. Formally, suppose that X1, X2, . . . , Xn are iid
with common mean µ and common variance σ2. We know from the central limit theorem
that if

X =
X1 +X2 + · · ·+Xn

n

(which is often called the sample average), then the limiting distribution of

X − µ
σ/
√
n

is N (0, 1). The way the central limit theorem is often used in practice is by saying that

X is approximately N
(
µ,
σ2

n

)
for large n. It is important to stress that this is not a careful mathematical statement like
the central limit theorem. However, it can be shown to provide a useful heuristic. Suppose
that we let n→∞. What happens to the variance of X? Since

Var(X) =
σ2

n

we see that Var(X)→ 0 as n→∞. This suggests that

lim
n→∞

X = lim
n→∞

X1 +X2 + · · ·+Xn

n
∼ N (µ, 0).

But what does it mean for a normal random variable to have variance 0? It means that
there is no spread to the distribution. In other words, the density function is concentrated
on the single point µ. Thus, this suggests that

lim
n→∞

X1 +X2 + · · ·+Xn

n
= µ.

The law of large numbers makes this precise.

Theorem (Weak Law of Large Numbers). Suppose that X1, X2, . . . , Xn are iid with common
mean µ and common variance σ2. Let

X =
X1 +X2 + · · ·+Xn

n

so that E(X) = µ and Var(X) = σ2/n. If ε > 0 is any positive number, then

lim
n→∞

P
{
|X − µ| ≥ ε

}
= 0.



Proof. The idea is to use Chebychev’s inequality, namely

P
{
|X − µ| ≥ ε

}
≤ Var(X − µ)

ε2
=

Var(X)

ε2
=

σ2

nε2
.

Hence, taking a limit as n→∞ gives

lim
n→∞

P
{
|X − µ| ≥ ε

}
≤ lim

n→∞

σ2

nε2
= 0.

Since a probability is always non-negative, we can use the squeeze (or sandwich) theorem to
conclude

lim
n→∞

P
{
|X − µ| ≥ ε

}
= 0

as required.

The way that a casino gets to use the LLN is as follows. Suppose that X represents the net
winnings of an individual player on one particular play of a certain game. If E(X) = µ with
µ < 0, then the casino expects to make $µ per play. Hence, if the game is played n times,
then the casino expects to make $nµ. Moreover, if Var(X) = σ2, then Var(X) = σ2/n.
Thus, for n large, there is essentially no variability to X. The probability that the casino
does not make roughly $nµ on n plays is therefore negligible. (Chebychev’s inequality can
be used to give the precise bounds.)

Example. Suppose that a player in a casino is making bets on red at roulette. Hence, for
each $1 bet, the player wins an additional $1 with probability 18/38 and loses that $1 with
probability 20/38. Let X denote the player’s net winnings so that

P {X = 1} =
18

38
and P {X = −1} =

20

38
.

Furthermore,

E(X) = (1) · 18

38
+ (−1) · 20

38
= − 2

38
= − 1

19
.

Now, suppose that X1, X2, . . . are iid each with this common distribution so that their
common mean is µ = −1/19. In other words, we can think of Xj as a $1 bet by player j.
The law of large numbers tells us that

lim
n→∞

X1 +X2 + · · ·+Xn

n
= − 1

19
.

To put this another way,

X1 +X2 + · · ·+Xn ≈ −
n

19
.

That is, if n bets are made this way at roulette, then the casino expects to make $n/19.
Since

E(X2) = (1)2 · 18

38
+ (−1)2 · 20

38
= 1,



we conclude

σ2 = Var(X) = E(X2)− [E(X)]2 = 1−
(
− 1

19

)2

=
360

361
.

Therefore, by Chebychev’s inequality,

P
{
|X − µ| ≥ ε

}
= P

{∣∣∣∣X +
1

19

∣∣∣∣ ≥ ε

}
≤ 360

361nε2
,

or equivalently,

P
{
|(X1 + · · ·+Xn) +

n

19
| ≥ nε

}
≤ 360

361nε2
.

Suppose that n = 1, 000, 000 (not at all unreasonable for a casino) and let ε = 0.01 so that

P {|(X1 + · · ·+Xn) + 52631.58| ≥ 10000} ≤ 360

36100
= 0.0099723.

In other words, the probability that the casino’s profit will not be in the range $42631.58
and $62631.58 is 1%; i.e., there is a 99% chance that the casino will make at least $42000!

Example. Suppose that a player in a casino is making working 6/8 place bets at craps.
(See Problem #4 on Assignment #6.) This means that for each $12 bet, the player wins
an additional $7 with probability 5/8 and loses that $12 with probability 3/8. Hence, if X
denotes the player’s net winnings, then

P {X = 7} =
5

8
and P {X = −12} =

3

8

so that

E(X) = (7) · 5

8
+ (−12) · 3

8
= −1

8
.

The law of large numbers tells us that if n bets are made this way, then the casino expects
to make $n/8.

Remark. This is not a contradiction, but notice in this last example that an individual
player is more likely to win money than lose money. This means that more people who make
this bet are likely to go away winners than losers. This does not contradict the LLN since
the LLN only applies to the casino and not to an individual player. In fact, from a marketing
point of view, this is very good for business for the casino. Most people will go away happy
since they’ve won: there will be a lot of small winners, but only a few large losers.

Summary. You can “win” at a casino. However, there are two caveats. You (i) must be
willing to tolerate a loss of $12 in order to have a 5/8 chance of winning $7, and (ii) must
only ever in your lifetime make a single bet; as soon as you start making multiple bets, the
LLN applies to you too!


