Math 302.102 Fall 2010
Solutions to Assignment \#8

1. Since X has a binomial distribution with parameters $n=100$ and $p=4 / 7$, we can use the central limit theorem to approximate $\mathbf{P}\{X \geq 50\}$. That is, we know that if $X \sim \operatorname{Bin}(n, p)$, then

$$
\frac{X-n p}{\sqrt{n p(1-p)}}
$$

has an approximately normal $\mathcal{N}(0,1)$ distribution as long as both $n p$ and $n(1-p)$ are not too small.
Solution 1. Using the continuity correction, we find

$$
\begin{aligned}
\mathbf{P}\{X \geq 50\}=\mathbf{P}\{X>49.5\} & =\mathbf{P}\left\{\frac{X-100 \cdot \frac{4}{7}}{\sqrt{100 \cdot \frac{4}{7} \cdot \frac{3}{7}}}>\frac{49.5-100 \cdot \frac{4}{7}}{\sqrt{100 \cdot \frac{4}{7} \cdot \frac{3}{7}}}\right\} \\
& \approx \mathbf{P}\{Z>-1.544\}
\end{aligned}
$$

where $Z \sim \mathcal{N}(0,1)$. Using a table of normal probabilities, we find $\mathbf{P}\{Z>-1.544\} \doteq 0.9382$. Thus,

$$
\mathbf{P}\{X \geq 50\} \approx 0.9382
$$

Solution 2. Observe that the largest X could be is 100. Thus, $\mathbf{P}\{X \geq 50\}$ is really equivalent to $\mathbf{P}\{50 \leq X \leq 100\}$, and so using the continuity correction, we find

$$
\begin{aligned}
\mathbf{P}\{X \geq 50\}=\mathbf{P}\{50 \leq X \leq 100\} & =\mathbf{P}\{49.5<X<100.5\} \\
& =\mathbf{P}\left\{\frac{49.5-100 \cdot \frac{4}{7}}{\sqrt{100 \cdot \frac{4}{7} \cdot \frac{3}{7}}}<\frac{X-100 \cdot \frac{4}{7}}{\sqrt{100 \cdot \frac{4}{7} \cdot \frac{3}{7}}}<\frac{100.5-100 \cdot \frac{4}{7}}{\sqrt{100 \cdot \frac{4}{7} \cdot \frac{3}{7}}}\right\} \\
& \approx \mathbf{P}\{-1.544<Z<8.761\} \\
& =\mathbf{P}\{Z<8.761\}-\mathbf{P}\{Z<-1.544\}
\end{aligned}
$$

where $Z \sim \mathcal{N}(0,1)$. Using a table of normal probabilities, we find $\mathbf{P}\{Z<8.761\}=1$ and $\mathbf{P}\{Z<-1.544\} \doteq 0.0618$. Thus,

$$
\mathbf{P}\{X \geq 50\} \approx 1-0.0618=0.9382
$$

Solution 3. Without using the continuity correction, we find

$$
\begin{aligned}
\mathbf{P}\{X \geq 50\} & =\mathbf{P}\left\{\frac{X-100 \cdot \frac{4}{7}}{\sqrt{100 \cdot \frac{4}{7} \cdot \frac{3}{7}}} \geq \frac{50-100 \cdot \frac{4}{7}}{\sqrt{100 \cdot \frac{4}{7} \cdot \frac{3}{7}}}\right\} \\
& \approx \mathbf{P}\{Z>-1.443\}
\end{aligned}
$$

where $Z \sim \mathcal{N}(0,1)$. Using a table of normal probabilities, we find $\mathbf{P}\{Z>-1.443\} \doteq 0.9251$. Thus,

$$
\mathbf{P}\{X \geq 50\} \approx 0.9251
$$

Remark. The exact probability can be determined using a computer. It is 0.9381732 . Note that the approximations provided by Solutions 1 and 2 are remarkably accurate.
2. Let X_{j} denote the outcome of the j th game so that $Y_{j}=X_{j}-4$ denotes the net winnings on the j th game. The total net winnings are therefore

$$
Y_{1}+\cdots+Y_{100}=X_{1}+\cdots+X_{100}-400
$$

Let

$$
\bar{Y}=\frac{Y_{1}+\cdots+Y_{100}}{100} \text { and } \bar{X}=\frac{X_{1}+\cdots+X_{100}}{100}
$$

so that

$$
\bar{Y}=\frac{Y_{1}+\cdots+Y_{100}}{100}=\frac{X_{1}+\cdots+X_{100}-400}{100}=\frac{X_{1}+\cdots+X_{100}}{100}-\frac{400}{100}=\bar{X}-4 .
$$

It is equivalent to work with either \bar{Y} or \bar{X}. The basic idea is that the central limit theorem tells us that both

$$
\frac{\bar{Y}-\mathbb{E}(\bar{Y})}{\sqrt{\operatorname{var}(\bar{Y})}} \text { and } \frac{\bar{X}-\mathbb{E}(\bar{X})}{\sqrt{\operatorname{var}(\bar{X})}}
$$

have an approximately normal $\mathcal{N}(0,1)$ distribution. Since $X_{1}, X_{2}, \ldots, X_{100}$ are iid, their common mean is

$$
\begin{aligned}
& \mathbb{E}\left(X_{1}\right) \\
& =1 \cdot \mathbf{P}\left\{X_{1}=1\right\}+2 \cdot \mathbf{P}\left\{X_{1}=2\right\}+3 \cdot \mathbf{P}\left\{X_{1}=3\right\}+4 \cdot \mathbf{P}\left\{X_{1}=4\right\}+5 \cdot \mathbf{P}\left\{X_{1}=5\right\}+6 \cdot \mathbf{P}\left\{X_{1}=6\right\} \\
& =\frac{1}{6}(1+2+3+4+5+6)=\frac{21}{6}=3.5
\end{aligned}
$$

and, similarly,

$$
\mathbb{E}\left(X_{1}^{2}\right)=\frac{1}{6}\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right)=\frac{91}{6}
$$

so that their common variance is

$$
\operatorname{var}\left(X_{1}\right)=\mathbb{E}\left(X_{1}^{2}\right)-\left[\mathbb{E}\left(X_{1}\right)\right]^{2}=\frac{91}{6}-\left(\frac{21}{6}\right)^{2}=\frac{105}{36}=\frac{35}{12}
$$

Thus,

$$
\mathbb{E}(\bar{X})=\mathbb{E}\left(X_{1}\right)=3.5 \quad \text { and } \quad \operatorname{var}(\bar{X})=\frac{\operatorname{var}\left(X_{1}\right)}{100}=\frac{35}{1200}=\frac{7}{240} .
$$

The fact that $\bar{Y}=\bar{X}-4$ implies that

$$
\mathbb{E}(\bar{Y})=\mathbb{E}(\bar{X}-4)=\mathbb{E}(\bar{X})-4=3.5-4=-0.5 \quad \text { and } \quad \operatorname{var}(\bar{Y})=\operatorname{var}(\bar{X}-4)=\operatorname{var}(\bar{X})=\frac{7}{240} .
$$

2. (a) The probability that you will lose exactly $\$ 50$ is

$$
\mathbf{P}\left\{Y_{1}+\cdots+Y_{100}=-50\right\}
$$

Using the continuity correction we find

$$
\begin{aligned}
\mathbf{P}\left\{Y_{1}+\cdots+Y_{100}=-50\right\} & =\mathbf{P}\left\{-50.5<Y_{1}+\cdots+Y_{100}<-49.5\right\} \\
& =\mathbf{P}\left\{-\frac{50.5}{100}<\frac{Y_{1}+\cdots+Y_{100}}{100}<-\frac{49.5}{100}\right\} \\
& =\mathbf{P}\left\{-\frac{50.5}{100}<\bar{Y}<-\frac{49.5}{100}\right\} .
\end{aligned}
$$

Normalizing gives

$$
\begin{aligned}
\mathbf{P}\left\{-\frac{50.5}{100}<\bar{Y}<-\frac{49.5}{100}\right\} & =\mathbf{P}\left\{\frac{-\frac{50.5}{100}-(-0.5)}{\sqrt{7 / 240}}<\frac{\bar{Y}-(-0.5)}{\sqrt{7 / 240}}<\frac{-\frac{49.5}{100}-(-0.5)}{\sqrt{7 / 240}}\right\} \\
& \approx \mathbf{P}\{-0.029<Z<0.029\}
\end{aligned}
$$

where $Z \sim \mathcal{N}(0,1)$. Using a table of normal probabilities, we find

$$
\mathbf{P}\{-0.029<Z<0.029\} \doteq 0.5120-0.4880=0.024
$$

so that the probability you will lose exactly $\$ 50$ is approximately 0.024 .
2. (b) The probability that you will win is

$$
\mathbf{P}\left\{Y_{1}+\cdots+Y_{100}>0\right\}=1-\mathbf{P}\left\{Y_{1}+\cdots+Y_{100} \leq 0\right\} .
$$

Using the continuity correction, we find

$$
\mathbf{P}\left\{Y_{1}+\cdots+Y_{100} \leq 0\right\}=\mathbf{P}\left\{Y_{1}+\cdots+Y_{100} \leq 0.5\right\}=\mathbf{P}\left\{\bar{Y} \leq \frac{0.5}{100}\right\},
$$

and normalizing gives

$$
\mathbf{P}\left\{\frac{\bar{Y}-(-0.5)}{\sqrt{7 / 240}} \leq \frac{\frac{0.5}{100}-(-0.5)}{\sqrt{7 / 240}}\right\} \approx \mathbf{P}\{Z \leq 2.898\}
$$

where $Z \sim \mathcal{N}(0,1)$. Using a table of normal probabilities, we find

$$
\mathbf{P}\{Z \leq 2.898\} \doteq 0.9981
$$

so that the probability you will win is approximately $1-0.9981=0.0019$.
3. (a) Note that if you roll a 1 so that $X=1$, then no matter what my first roll is, I will always obtain a number that is greater than or equal to yours. Hence, by the definition of conditional probability

$$
\mathbf{P}\{X=1, Y=1\}=\mathbf{P}\{Y=1 \mid X=1\} \cdot \mathbf{P}\{X=1\}=1 \cdot \frac{1}{6}=\frac{1}{6} .
$$

Furthermore, since $\mathbf{P}\{Y=1 \mid X=1\}=1$ it follows that $\mathbf{P}\{Y=k \mid X=1\}=0$ for any $k=2,3, \ldots$ so that

$$
\mathbf{P}\{X=1, Y=k\}=0
$$

if $k=2,3, \ldots$.
3. (b) Note that if you roll a 2 so that $X=2$, then there are 5 ways that I can obtain a number that is greater than or equal to yours on any given roll. Thus, the only way that I will re-roll is if I roll a 1 which happens with probability $1 / 6$. This means that I will need exactly k rolls if my first $k-1$ rolls yield a 1 and my k th roll yields anything other than a 1 . This means that

$$
\mathbf{P}\{Y=k \mid X=2\}=\left(\frac{1}{6}\right)^{k-1} \cdot \frac{5}{6}
$$

so that by the definition of conditional probability

$$
\mathbf{P}\{X=2, Y=k\}=\mathbf{P}\{Y=k \mid X=2\} \cdot \mathbf{P}\{X=2\}=\left(\frac{1}{6}\right)^{k-1} \cdot \frac{5}{6} \cdot \frac{1}{6}
$$

for $k=1,2,3, \ldots$.
3. (c) Using exactly the same reasoning in the previous part implies that if $k=1,2,3, \ldots$, then

$$
\begin{aligned}
& \mathbf{P}\{X=3, Y=k\}=\left(\frac{2}{6}\right)^{k-1} \cdot \frac{4}{6} \cdot \frac{1}{6}, \\
& \mathbf{P}\{X=4, Y=k\}=\left(\frac{3}{6}\right)^{k-1} \cdot \frac{3}{6} \cdot \frac{1}{6}, \\
& \mathbf{P}\{X=5, Y=k\}=\left(\frac{4}{6}\right)^{k-1} \cdot \frac{2}{6} \cdot \frac{1}{6},
\end{aligned}
$$

and

$$
\mathbf{P}\{X=6, Y=k\}=\left(\frac{5}{6}\right)^{k-1} \cdot \frac{1}{6} \cdot \frac{1}{6} .
$$

3. (d) Using the hint given in the problem, we want to compute

$$
\mathbb{E}(Y)=\sum_{i=1}^{6} \sum_{k=1}^{\infty} k \mathbf{P}\{X=i, Y=k\}
$$

Now, let's consider each of $i=1,2,3,4,5,6$ in turn. For $i=1$, since the only non-zero value of $\mathbf{P}\{X=1, Y=k\}$ is when $k=1$, we have

$$
\sum_{k=1}^{\infty} k \mathbf{P}\{X=1, Y=k\}=1 \cdot \mathbf{P}\{X=1, Y=1\}+\sum_{k=2}^{\infty} k \mathbf{P}\{X=1, Y=k\}=\frac{1}{6}+0=\frac{1}{6} .
$$

For $i=2$, we have

$$
\sum_{k=1}^{\infty} k \mathbf{P}\{X=2, Y=k\}=\sum_{k=1}^{\infty} k\left(\frac{1}{6}\right)^{k-1} \cdot \frac{5}{6} \cdot \frac{1}{6}=\frac{5}{6} \cdot \frac{1}{6} \sum_{k=1}^{\infty} k\left(\frac{1}{6}\right)^{k-1}=\frac{5}{6} \cdot \frac{1}{6} \cdot \frac{1}{(1-1 / 6)^{2}}=\frac{1}{5}
$$

Similarly, for $i=3,4,5,6$, we find

$$
\begin{aligned}
& \sum_{k=1}^{\infty} k \mathbf{P}\{X=3, Y=k\}=\sum_{k=1}^{\infty} k\left(\frac{2}{6}\right)^{k-1} \cdot \frac{4}{6} \cdot \frac{1}{6}=\frac{4}{6} \cdot \frac{1}{6} \cdot \frac{1}{(1-2 / 6)^{2}}=\frac{1}{4}, \\
& \sum_{k=1}^{\infty} k \mathbf{P}\{X=4, Y=k\}=\sum_{k=1}^{\infty} k\left(\frac{3}{6}\right)^{k-1} \cdot \frac{3}{6} \cdot \frac{1}{6}=\frac{3}{6} \cdot \frac{1}{6} \cdot \frac{1}{(1-3 / 6)^{2}}=\frac{1}{3}, \\
& \sum_{k=1}^{\infty} k \mathbf{P}\{X=5, Y=k\}=\sum_{k=1}^{\infty} k\left(\frac{4}{6}\right)^{k-1} \cdot \frac{2}{6} \cdot \frac{1}{6}=\frac{2}{6} \cdot \frac{1}{6} \cdot \frac{1}{(1-4 / 6)^{2}}=\frac{1}{2},
\end{aligned}
$$

and

$$
\sum_{k=1}^{\infty} k \mathbf{P}\{X=6, Y=k\}=\sum_{k=1}^{\infty} k\left(\frac{5}{6}\right)^{k-1} \cdot \frac{1}{6} \cdot \frac{1}{6}=\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{(1-5 / 6)^{2}}=1
$$

Hence, we can now sum over i to conclude

$$
\mathbb{E}(Y)=\sum_{i=1}^{6} \sum_{k=1}^{\infty} k \mathbf{P}\{X=i, Y=k\}=\frac{1}{6}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}+1=\frac{49}{20}
$$

4. Since X and Y are independent, we know that

$$
\mathbb{E}\left(X^{2} e^{Y}\right)=\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(e^{Y}\right)
$$

Since $X \sim \mathcal{N}(3,2)$, we know that $\mathbb{E}\left(X^{2}\right)=\operatorname{var}(X)+[\mathbb{E}(X)]^{2}=2+3^{2}=11$. Since $Y \sim \operatorname{Exp}(2)$, we know that

$$
\mathbb{E}\left(e^{Y}\right)=\int_{0}^{\infty} e^{y} \cdot 2 e^{-2 y} \mathrm{~d} y=2 \int_{0}^{\infty} e^{-y} \mathrm{~d} y=2
$$

Thus,

$$
\mathbb{E}\left(X^{2} e^{Y}\right)=11 \cdot 2=22
$$

5. (a) To begin, observe that $\{(x, y): 0<x<y<1\}$ describes the triangle in the first quadrant above the line $y=x$ and below the line $y=1$. The area of this triangle is therefore

$$
\frac{1}{2} \cdot \text { base } \cdot \text { height }=\frac{1}{2} \cdot 1 \cdot 1=\frac{1}{2}
$$

Since (X, Y) is uniformly distributed, its density must be inversely proportional to the area. That is,

$$
f(x, y)= \begin{cases}2, & 0<x<y<1 \\ 0, & \text { otherwise }\end{cases}
$$

5. (b) To compute $\mathbf{P}\left\{X<Y^{2}\right\}$ we need to integrate the density function over a suitable region. That is,

$$
\mathbf{P}\left\{X<Y^{2}\right\}=\iint_{\left\{0<x<y^{2}<1\right\}} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{y^{2}} 2 \mathrm{~d} x \mathrm{~d} y=\int_{0}^{1} 2 y^{2} \mathrm{~d} y=\frac{2}{3}
$$

5. (c) By definition,

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y=\int_{x}^{1} 2 \mathrm{~d} y=2(1-x)
$$

provided that $0<x<1$.
5. (d) We being by computing

$$
\mathbb{E}(X)=\int_{0}^{1} x \cdot 2(1-x) \mathrm{d} x=\int_{0}^{1}\left(2 x-2 x^{2}\right) \mathrm{d} x=1-\frac{2}{3}=\frac{1}{3}
$$

and

$$
\mathbb{E}\left(X^{2}\right)=\int_{0}^{1} x^{2} \cdot 2(1-x) \mathrm{d} x=\int_{0}^{1}\left(2 x^{2}-2 x^{3}\right) \mathrm{d} x=\frac{2}{3}-\frac{2}{4}=\frac{1}{6}
$$

so that

$$
\operatorname{var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}=\frac{1}{6}-\left(\frac{1}{3}\right)^{2}=\frac{1}{18}
$$

Let X_{1}, \ldots, X_{100} denote the x-coordinates of the 100 points chosen independently and uniformly at random from the triangle, and set

$$
\bar{X}=\frac{X_{1}+\cdots+X_{100}}{100} .
$$

We are interested in computing

$$
\mathbf{P}\left\{\bar{X}>\frac{7}{18}\right\} .
$$

The central limit theorem tells us that

$$
\frac{\bar{X}-\mathbb{E}(\bar{X})}{\sqrt{\operatorname{var}(\bar{X})}}
$$

has an approximately $\mathcal{N}(0,1)$ distribution. Thus, since

$$
\mathbb{E}(\bar{X})=\mathbb{E}\left(X_{1}\right)=\frac{1}{3}
$$

and

$$
\operatorname{var}(\bar{X})=\frac{\operatorname{var}\left(X_{1}\right)}{100}=\frac{1 / 18}{100}=\frac{1}{1800},
$$

we find

$$
\mathbf{P}\left\{\bar{X}>\frac{7}{18}\right\}=\mathbf{P}\left\{\frac{\bar{X}-\frac{1}{3}}{\sqrt{\frac{1}{1800}}}>\frac{\frac{7}{18}-\frac{1}{3}}{\sqrt{\frac{1}{1800}}}\right\} \approx \mathbf{P}\left\{Z>\frac{10}{\sqrt{18}}\right\}
$$

where $Z \sim \mathcal{N}(0,1)$. Using a table of normal probabilities, we find

$$
\mathbf{P}\left\{\bar{X}>\frac{7}{18}\right\} \approx \mathbf{P}\left\{Z>\frac{10}{\sqrt{18}}\right\} \doteq \mathbf{P}\{Z>2.357\} \doteq 1-0.9909=0.0091
$$

6. Let X denote the number of kernels that pop so that X has a binomial distribution with parameters n and p. We now need to find n and p. We are told that $\mathbb{E}(X)=63$ and $\operatorname{var}(X)=6.3$. We know that, in general, if $X \sim \operatorname{Bin}(n, p)$, then $\mathbb{E}(X)=n p$ and $\operatorname{var}(X)=n p(1-p)$. Thus, we must solve

$$
n p=63 \text { and } n p(1-p)=6.3
$$

for n and p. Since $n p=63$, we find

$$
6.3=n p(1-p)=63(1-p) \quad \text { so that } \quad 1-p=\frac{1}{10} \quad \text { and so } \quad p=\frac{9}{10}
$$

Thus,

$$
63=n p=\frac{9 n}{10} \quad \text { implies } \quad n=700 .
$$

Hence, $X \sim \operatorname{Bin}(n=700, p=0.9)$.
7. (a) Let X denote the number of people in the sample that support Party A so that the exact distribution of X is $X \sim \operatorname{Bin}(n=1350, p=0.40)$. Using the normal approximation to the binomial distribution, we know that

$$
\frac{X-n p}{\sqrt{n p(1-p)}}
$$

has an approximately $\mathcal{N}(0,1)$ distribution.

Using the continuity correction, we find

$$
\begin{aligned}
\mathbf{P}\{X>544\}=\mathbf{P}\{X \geq 545\}=\mathbf{P}\{X \geq 544.5\} & =\mathbf{P}\left\{\frac{X-1350 \cdot 0.4}{\sqrt{1350 \cdot 0.4 \cdot 0.6}} \geq \frac{544.5-1350 \cdot 0.4}{\sqrt{1350 \cdot 0.4 \cdot 0.6}}\right\} \\
& \approx \mathbf{P}\{Z \geq 0.25\}
\end{aligned}
$$

where $Z \sim \mathcal{N}(0,1)$. Using a table of normal probabilities, we find

$$
\mathbf{P}\{X>544\} \approx \mathbf{P}\{Z \geq 0.25\} \doteq 1-0.5987=0.4013
$$

7. (b) Let X denote the number of people in the sample that support Party B so that the exact distribution of X is $X \sim \operatorname{Bin}(n=1350, p=0.02)$. Since $n p=1350 \cdot 0.02=2.7$ is quite small, the normal approximation to the binomial distribution is not applicable. Instead, we use the Poisson approximation to the binomial distribution. That is, X has an approximately $\operatorname{Poisson}(\lambda=n p)$ distribution. Thus,

$$
\mathbf{P}\{X \leq 2\} \approx \mathbf{P}\{Y \leq 2\}
$$

where $Y \sim \operatorname{Poisson}(2.7)$, and so we find

$$
\begin{aligned}
\mathbf{P}\{X \leq 2\} \approx \mathbf{P}\{Y \leq 2\} & =\mathbf{P}\{Y=0\}+\mathbf{P}\{Y=1\}+\mathbf{P}\{Y=2\} \\
& =\frac{2.7^{0} e^{-2.7}}{0!}+\frac{2.7^{1} e^{-2.7}}{1!}+\frac{2.7^{2} e^{-2.7}}{2!} \\
& =e^{-2.7}\left(1+2.7+\frac{2.7^{2}}{2}\right) \\
& \doteq 0.4936245 .
\end{aligned}
$$

