Math 302.102 Fall 2010
Solutions to Assignment \#6

1. The definition of conditional probability implies that

$$
\mathbf{P}\{X>t+s \mid X>t\}=\frac{\mathbf{P}\{X>t+s, X>t\}}{\mathbf{P}\{X>t\}}=\frac{\mathbf{P}\{X>t+s\}}{\mathbf{P}\{X>t\}}
$$

since the only way for both $\{X>t+s\}$ and $\{X>t\}$ to happen is if $\{X>t+s\}$ happens. Since $X \sim \operatorname{Exp}(\lambda)$, we find that if $a>0$, then

$$
\mathbf{P}\{X>a\}=\int_{a}^{\infty} \lambda e^{\lambda x} \mathrm{~d} x=-\left.e^{-\lambda x}\right|_{a} ^{\infty}=e^{-\lambda a} .
$$

Therefore,

$$
\mathbf{P}\{X>t+s \mid X>t\}=\frac{\mathbf{P}\{X>t+s\}}{\mathbf{P}\{X>t\}}=\frac{e^{-\lambda(t+s)}}{e^{-\lambda t}}=e^{-\lambda s}=\mathbf{P}\{X>s\} .
$$

Equivalently, Bayes' rule implies that

$$
\mathbf{P}\{X>t+s \mid X>t\}=\frac{\mathbf{P}\{X>t \mid X>t+s\} \mathbf{P}\{X>t+s\}}{\mathbf{P}\{X>t\}}=\frac{\mathbf{P}\{X>t+s\}}{\mathbf{P}\{X>t\}}
$$

since $\mathbf{P}\{X>t \mid X>t+s\}=1$; that is, if know $X$ is at least $t+s$, then we know with certainty that $X$ is at least $t$. We find, as above,

$$
\mathbf{P}\{X>t+s \mid X>t\}=\frac{\mathbf{P}\{X>t+s\}}{\mathbf{P}\{X>t\}}=\frac{e^{-\lambda(t+s)}}{e^{-\lambda t}}=e^{-\lambda s}=\mathbf{P}\{X>s\} .
$$

2. If $X \sim \operatorname{Unif}(0,1)$, then

$$
f(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) We find

$$
\mu=\mathbb{E}(X)=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x=\int_{0}^{1} x \cdot 1 \mathrm{~d} x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2}
$$

and therefore
$\sigma^{2}=\operatorname{var}(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) \mathrm{d} x=\int_{0}^{1}(x-1 / 2)^{2} \cdot 1 \mathrm{~d} x=\left.\frac{1}{3}(x-1 / 2)^{3}\right|_{0} ^{1}=\frac{(1 / 2)^{3}-(-1 / 2)^{3}}{3}=\frac{1}{12}$.
Equivalently, $\operatorname{var}(X)$ can be determined by first computing

$$
\mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) \mathrm{d} x=\int_{0}^{1} x^{2} \cdot 1 \mathrm{~d} x=\left.\frac{1}{3} x^{3}\right|_{0} ^{1}=\frac{1}{3}
$$

and noting that

$$
\sigma^{2}=\operatorname{var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}=\frac{1}{3}-\left(\frac{1}{2}\right)^{2}=\frac{1}{12} .
$$

(b) We begin by noting that

$$
\mathbf{P}\{\mu-2 \sigma<X<\mu+2 \sigma\}=\mathbf{P}\left\{\frac{1}{2}-\frac{1}{\sqrt{3}}<X<\frac{1}{2}+\frac{1}{\sqrt{3}}\right\}=\int_{\frac{1}{2}-\frac{1}{\sqrt{3}}}^{\frac{1}{2}+\frac{1}{\sqrt{3}}} f(x) \mathrm{d} x .
$$

Observe that

$$
\frac{1}{2}-\frac{1}{\sqrt{3}}<0 \quad \text { and } \quad \frac{1}{2}+\frac{1}{\sqrt{3}}>1 .
$$

Thus, since $f(x)=1$ only when $0 \leq x \leq 1$, we see that

$$
\begin{aligned}
\int_{\frac{1}{2}-\frac{1}{\sqrt{3}}}^{\frac{1}{2}+\frac{1}{\sqrt{3}}} f(x) \mathrm{d} x & =\int_{\frac{1}{2}-\frac{1}{\sqrt{3}}}^{0} f(x) \mathrm{d} x+\int_{0}^{1} f(x) \mathrm{d} x+\int_{1}^{\frac{1}{2}+\frac{1}{\sqrt{3}}} f(x) \mathrm{d} x \\
& =\int_{\frac{1}{2}-\frac{1}{\sqrt{3}}}^{0} 0 \mathrm{~d} x+\int_{0}^{1} 1 \mathrm{~d} x+\int_{1}^{\frac{1}{2}+\frac{1}{\sqrt{3}}} 0 \mathrm{~d} x \\
& =0+\int_{0}^{1} 1 \mathrm{~d} x+0 \\
& =1
\end{aligned}
$$

Chebychev's inequality states that $\mathbf{P}\{\mu-2 \sigma<X<\mu+2 \sigma\} \geq 0.75$; in other words, the area under any density curve within two standard deviations of the mean is at least 0.75 . In this example, the area is 1 which, as promised by Chebychev's inequality, is at least 0.75 .
3. Suppose that $X$ is a random variable with density function

$$
f_{X}(x)=\frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{m / 2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \frac{x^{m / 2-1}}{\left(1+\frac{m x}{n}\right)^{(m+n) / 2}}, \quad 0<x<\infty .
$$

Let $Y=1 /\left(1+\frac{m}{n} X\right)$ so that if $0 \leq y \leq 1$, then the distribution function of $Y$ is

$$
\begin{aligned}
F_{Y}(y) & =\mathbf{P}\{Y \leq y\}=\mathbf{P}\left\{1 /\left(1+\frac{m}{n} X\right) \leq y\right\}=\mathbf{P}\left\{1+\frac{m}{n} X \geq 1 / y\right\}=\mathbf{P}\left\{X \geq \frac{n}{m}(1 / y-1)\right\} \\
& =1-\mathbf{P}\left\{X \leq \frac{n}{m}(1 / y-1)\right\} \\
& =1-\int_{0}^{\frac{n}{m}(1 / y-1)} \frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{m / 2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \frac{x^{m / 2-1}}{\left(1+\frac{m x}{n}\right)^{(m+n) / 2}} d x .
\end{aligned}
$$

Taking derivatives with respect to $y$ gives

$$
\begin{aligned}
f_{Y}(y) & =\frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{m / 2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \frac{\left(\frac{n}{m}(1 / y-1)\right)^{m / 2-1}}{\left(1+\frac{m \frac{n}{m}(1 / y-1)}{n}\right)^{(m+n) / 2}} \cdot \frac{n}{m y^{2}} \\
& =\frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{m / 2}\left(\frac{n}{m}\right)^{m / 2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \frac{(1 / y-1)^{m / 2-1}}{(1 / y)^{(m+n) / 2}} \cdot \frac{1}{y^{2}} \\
& =\frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} y^{m / 2+n / 2} y^{-2} y^{1-m / 2}(1-y)^{m / 2-1} \\
& =\frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} y^{n / 2-1}(1-y)^{m / 2-1}
\end{aligned}
$$

for $0 \leq y \leq 1$. We recognize that this is the density of a $\operatorname{Beta}(n / 2, m / 2)$ random variable, and so we conclude that $Y=1 /\left(1+\frac{m}{n} X\right) \sim \operatorname{Beta}(n / 2, m / 2)$.
4. Suppose that $X$ is a random variable with density function

$$
f_{X}(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n} \Gamma\left(\frac{n}{2}\right)} \cdot\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2}, \quad-\infty<x<\infty .
$$

Let $Y=X^{2}$. If $y \geq 0$, then the distribution function of $Y$ is given by

$$
\begin{aligned}
F_{Y}(y)=\mathbf{P}\{Y \leq y\}=\mathbf{P}\left\{X^{2} \leq y\right\}=\mathbf{P}\{-\sqrt{y} \leq X \leq \sqrt{y}\} & =\int_{-\sqrt{y}}^{\sqrt{y}} f_{X}(x) d x \\
& =\int_{0}^{\sqrt{y}} f_{X}(x) d x-\int_{0}^{-\sqrt{y}} f_{X}(x) d x .
\end{aligned}
$$

Taking derivatives with respect to $y$ gives

$$
\begin{aligned}
f_{Y}(y)=f_{X}(\sqrt{y}) \cdot \frac{1}{2 \sqrt{y}}-f_{X}(-\sqrt{y}) \cdot \frac{-1}{2 \sqrt{y}} & =\frac{1}{2 \sqrt{y}}\left(f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})\right) \\
& =\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n y} \Gamma\left(\frac{n}{2}\right)} \cdot\left(1+\frac{y}{n}\right)^{-(n+1) / 2}
\end{aligned}
$$

for $y \geq 0$. Equivalently, if use the fact that $\Gamma(1 / 2)=\sqrt{\pi}$, then for $y \geq 0$ we can express $f_{Y}$ as

$$
f_{Y}(y)=\frac{\Gamma\left(\frac{1+n}{2}\right)\left(\frac{1}{n}\right)^{1 / 2}}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \cdot \frac{y^{1 / 2-1}}{\left(1+\frac{y}{n}\right)^{(1+n) / 2}}
$$

(Notice that this density is the same as the one given in the previous problem with $m=1$.)
5. If we let $Y=M-3$, then we are told that $Y \sim \operatorname{Exp}(1 / 2)$ so that $\mathbb{E}(Y)=2$ and $\operatorname{var}(Y)=4$. This was done in class. If $Y \sim \operatorname{Exp}(\lambda)$, then $\mathbb{E}(Y)=1 / \lambda$ and $\operatorname{var}(Y)=1 / \lambda^{2}$. Hence, if $\mathbb{E}(Y)=2$, then it must be the case that $\lambda=1 / 2$.
(a) We find $\mathbb{E}(Y)=\mathbb{E}(M-3)=\mathbb{E}(M)-3$ so that $\mathbb{E}(M)=\mathbb{E}(Y)+3=2+3=5$. We also find that $\operatorname{var}(Y)=\operatorname{var}(M-3)=\operatorname{var}(M)=4$.
(b) Since $M=\log X$, we can write $Y=\log (X)-3$ where $Y \sim \operatorname{Exp}(1 / 2)$. For $\log (x)-3 \geq 0$, or equivalently, for $x \geq e^{3}$, the distribution function of $X$ is

$$
\begin{aligned}
F_{X}(x)=\mathbf{P}\{X \leq x\}=\mathbf{P}\{\log (X)-3 \leq \log (x)-3\} & =\mathbf{P}\{Y \leq \log (x)-3\} \\
& =\int_{-\infty}^{\log (x)-3} f_{Y}(y) \mathrm{d} y \\
& =\int_{0}^{\log (x)-3} \frac{1}{2} e^{-y / 2} \mathrm{~d} y \\
& =1-e^{-1 / 2(\log (x)-3)} \\
& =1-e^{3 / 2} x^{-1 / 2}
\end{aligned}
$$

Thus, the density function of $X$ is

$$
f_{X}(x)= \begin{cases}\frac{e^{3 / 2}}{2} x^{-3 / 2}, & x \geq e^{3} \\ 0, & x<e^{3}\end{cases}
$$

(c) Let $M_{1}$ and $M_{2}$ denote the magnitudes of the two earthquakes so that $Y_{1}=M_{1}-3$ and $Y_{2}=M_{2}-3$ are independent $\operatorname{Exp}(1 / 2)$ random variables. We are interested in computing $\mathbf{P}\left\{\min \left\{M_{1}, M_{2}\right\}>4\right\}$. However, we don't know the distributions of $M_{1}$ and $M_{2}$. Instead, we observe that

$$
\min \left\{M_{1}, M_{2}\right\}>4 \text { if and only if }\left\{M_{1}-3, M_{2}-3\right\}>4-3,
$$

That is, $\mathbf{P}\left\{\min \left\{M_{1}, M_{2}\right\}>4\right\}=\mathbf{P}\left\{\min \left\{Y_{1}, Y_{2}\right\}>1\right\}$. Hence,

$$
\begin{aligned}
\mathbf{P}\left\{\min \left\{Y_{1}, Y_{2}\right\}>1\right\}=\mathbf{P}\left\{Y_{1}>1, Y_{2}>1\right\}=\mathbf{P}\left\{Y_{1}>1\right\} \mathbf{P}\left\{Y_{2}>1\right\} & =\left[\mathbf{P}\left\{Y_{1}>1\right\}\right]^{2} \\
& =\left[\int_{1}^{\infty} \frac{1}{2} e^{-y / 2} \mathrm{~d} y\right]^{2} \\
& =\left[e^{-1 / 2}\right]^{2} \\
& =e^{-1} .
\end{aligned}
$$

6. Let $X_{i}$ be the lifetime of the $i$ th component so that $X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right)$ where $\lambda_{i}$ is given in the diagram in the problem. If $Y_{1}=\min \left\{X_{1}, X_{2}, X_{3}\right\}, Y_{2}=\min \left\{X_{4}, X_{5}\right\}$, and $Y=\max \left\{Y_{1}, Y_{2}\right\}$, then the expected lifetime of the circuit is given by $\mathbb{E}(Y)$. We begin by finding the distribution function of $Y_{1}$. That is, if $y \geq 0$, then

$$
\begin{aligned}
F_{Y_{1}}(y)=\mathbf{P}\left\{Y_{1} \leq y\right\}=1-\mathbf{P}\left\{Y_{1}>y\right\} & =1-\mathbf{P}\left\{\min \left\{X_{1}, X_{2}, X_{3}\right\}>y\right\} \\
& =1-\mathbf{P}\left\{X_{1}>y, X_{2}>y, X_{3}>y\right\} \\
& =1-\mathbf{P}\left\{X_{1}>y\right\} \mathbf{P}\left\{X_{2}>y\right\} \mathbf{P}\left\{X_{3}>y\right\}
\end{aligned}
$$

If $X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right)$, then

$$
\mathbf{P}\left\{X_{i}>y\right\}=\int_{y}^{\infty} \lambda e^{\lambda x} \mathrm{~d} x=-\left.e^{-\lambda x}\right|_{y} ^{\infty}=e^{-\lambda y}
$$

(This same calculation was done in Problem 1.) Thus, if $y \geq 0$, then

$$
F_{Y_{1}}(y)=1-e^{-\lambda_{1} y} e^{-\lambda_{2} y} e^{-\lambda_{3} y}=1-e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) y}
$$

The distribution function of $Y_{2}$ is found in exactly the same manner. That is, if $y \geq 0$, then

$$
\begin{aligned}
F_{Y_{2}}(y)=\mathbf{P}\left\{Y_{2} \leq y\right\}=1-\mathbf{P}\left\{Y_{2}>y\right\} & =1-\mathbf{P}\left\{\min \left\{X_{4}, X_{5}\right\}>y\right\} \\
& =1-\mathbf{P}\left\{X_{4}>y, X_{5}>y\right\} \\
& =1-\mathbf{P}\left\{X_{4}>y\right\} \mathbf{P}\left\{X_{5}>y\right\} \\
& =1-e^{-\lambda_{4} y} e^{-\lambda_{5} y} \\
& =1-e^{-\left(\lambda_{4}+\lambda_{5}\right) y} .
\end{aligned}
$$

For $y \geq 0$, the distribution function of $Y$ is

$$
\begin{aligned}
F_{Y}(y)=\mathbf{P}\{Y \leq y\}=\mathbf{P}\left\{\max \left\{Y_{1}, Y_{2}\right\} \leq y\right\} & =\mathbf{P}\left\{Y_{1} \leq y, Y_{2} \leq y\right\} \\
& =\mathbf{P}\left\{Y_{1} \leq y\right\} \mathbf{P}\left\{Y_{2} \leq y\right\} \\
& =\left[1-e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) y}\right]\left[1-e^{-\left(\lambda_{4}+\lambda_{5}\right) y}\right] \\
& =1-e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) y}-e^{-\left(\lambda_{4}+\lambda_{5}\right) y}+e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}\right) y}
\end{aligned}
$$

so that the density function of $Y$ is

$$
f_{Y}(y)=\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) y}+\left(\lambda_{4}+\lambda_{5}\right) e^{-\left(\lambda_{4}+\lambda_{5}\right) y}-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}\right) e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}\right) y}
$$

for $y \geq 0$. Since we now know the density function for $Y$, we can compute $\mathbb{E}(Y)$, that is

$$
\begin{aligned}
\mathbb{E}(Y)= & \int_{-\infty}^{\infty} y f_{Y}(y) \mathrm{d} y \\
= & \left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \int_{0}^{\infty} y e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) y} \mathrm{~d} y+\left(\lambda_{4}+\lambda_{5}\right) \int_{0}^{\infty} y e^{-\left(\lambda_{4}+\lambda_{5}\right) y} \mathrm{~d} y \\
& -\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}\right) \int_{0}^{\infty} y e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}\right) y} \mathrm{~d} y \\
= & \frac{1}{\lambda_{1}+\lambda_{2}+\lambda_{3}}+\frac{1}{\lambda_{4}+\lambda_{5}}-\frac{1}{\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}} .
\end{aligned}
$$

Note that

$$
\int_{0}^{\infty} \lambda^{2} x e^{-\lambda x} \mathrm{~d} x=1
$$

since it is the integral of the density of a $\operatorname{Gamma}(2, \lambda)$ random variable. Thus,

$$
\int_{0}^{\infty} \lambda x e^{-\lambda x} \mathrm{~d} x=\frac{1}{\lambda}
$$

Finally, we can substitute in the values of $\lambda_{i}$, namely $\lambda_{1}=0.3, \lambda_{2}=0.4, \lambda_{3}=0.3, \lambda_{4}=0.1$, $\lambda_{5}=0.1$, to conclude that

$$
\mathbb{E}(Y)=\frac{1}{0.3+0.4+0.3}+\frac{1}{0.1+0.1}-\frac{1}{0.3+0.4+0.3+0.1+0.1}=\frac{31}{6} .
$$

7. If $X \sim \operatorname{Gamma}(\alpha, \lambda)$, then

$$
f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}
$$

for $x \geq 0$ and so

$$
m(t)=\mathbb{E}\left(e^{t X}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) \mathrm{d} x=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} e^{t x} x^{\alpha-1} e^{-\lambda x} \mathrm{~d} x=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha-1} e^{-(\lambda-t) x} \mathrm{~d} x .
$$

We recognize the integral as the integral of a gamma density function with parameters $\alpha$ and $\lambda-t$. Thus,

$$
\int_{0}^{\infty} x^{\alpha-1} e^{-(\lambda-t) x}=\frac{\Gamma(\alpha)}{(\lambda-t)^{\alpha}}
$$

and so

$$
m(t)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \cdot \frac{\Gamma(\alpha)}{(\lambda-t)^{\alpha}}=\frac{\lambda^{\alpha}}{(\lambda-t)^{\alpha}} .
$$

