Math 302.102 Fall 2010
Solutions to Assignment \#4

1. (a) We find

$$
\mathbf{P}\{0<X<2\}=\int_{0}^{2} f(x) \mathrm{d} x=\int_{1}^{2} x^{-2} \mathrm{~d} x=-\left.x^{-1}\right|_{1} ^{2}=1-\frac{1}{2}=\frac{1}{2} .
$$

(b) We find

$$
\mathbf{P}\{0<X<2\}=\int_{0}^{2} f(x) \mathrm{d} x=\int_{0}^{2} 7 e^{-7 x} \mathrm{~d} x=-\left.e^{-7 x}\right|_{0} ^{2}=1-e^{-14} .
$$

(c) We find

$$
\mathbf{P}\{0<X<2\}=\int_{0}^{2} f(x) \mathrm{d} x=\int_{0}^{1} \frac{e}{e^{2}-5} x^{2} e^{-x} \mathrm{~d} x=-\left.\frac{e}{e^{2}-5} \cdot e^{-x}\left[x^{2}+2 x+2\right]\right|_{0} ^{1}=\frac{2 e-5}{e^{2}-5} .
$$

(d) We find

$$
\mathbf{P}\{0<X<2\}=\int_{0}^{2} f(x) \mathrm{d} x=\int_{0}^{2} x e^{-x} \mathrm{~d} x=\left.\left[-x e^{-x}-e^{-x}\right]\right|_{0} ^{2}=1-3 e^{-2}
$$

2. (a) Notice that we must necessarily have $0<a<4$. Since

$$
\mathbf{P}\{X \leq a\}=\int_{0}^{a} \frac{1}{8} x \mathrm{~d} x=\left.\frac{x^{2}}{16}\right|_{0} ^{a}=\frac{a^{2}}{16},
$$

we find that in order for $\mathbf{P}\{X \leq a\}=1 / 2$ we must have

$$
\frac{a^{2}}{16}=\frac{1}{2}
$$

implying that $a^{2}=8$. The restriction that $a>0$ implies that the unique value of a such that $\mathbf{P}\{X \leq a\}=1 / 2$ is $a=\sqrt{8}$.
(b) As in (a), we must necessarily have $0<a<4$. Since

$$
\mathbf{P}\{X \geq a\}=\int_{a}^{4} \frac{1}{8} x \mathrm{~d} x=\left.\frac{x^{2}}{16}\right|_{a} ^{4}=1-\frac{a^{2}}{16},
$$

we find that in order for $\mathbf{P}\{X \leq a\}=1 / 2$ we must have

$$
1-\frac{a^{2}}{16}=\frac{1}{4}
$$

implying that $a^{2}=12$. The restriction that $a>0$ implies that the unique value of a such that $\mathbf{P}\{X \geq a\}=1 / 4$ is $a=\sqrt{12}$.
3. Recall that the distribution function F of a random variable is defined as

$$
F(x)=\mathbf{P}\{X \leq x\} .
$$

Since X is a continuous random variable, we know that $\mathbf{P}\{X=x\}=0$ for any $x \in \mathbb{R}$ so that

$$
\mathbf{P}\{X<x\}=\mathbf{P}\{X \leq x\}=F(x) .
$$

(a) We find

$$
\mathbf{P}\{X \leq 1\}=F(1)=\frac{1}{8}(1)^{3}=\frac{1}{8} .
$$

(b) We find

$$
\mathbf{P}\{0.5 \leq X \leq 1.5\}=\mathbf{P}\{X \leq 1.5\}-\mathbf{P}\{X<0.5\}=F(1.5)-F(0.5)=\frac{1}{8}\left[(1.5)^{3}-(0.5)^{3}\right]=\frac{13}{32}
$$

(c) Notice that we must necessarily have $0<a<2$. Since

$$
\mathbf{P}\{X \leq a\}=F(a)=\frac{a^{3}}{8}
$$

we find that in order for $\mathbf{P}\{X \leq a\}=1 / 2$ we must have

$$
\frac{a^{3}}{8}=\frac{1}{2}
$$

implying that $a^{3}=4$. Thus, the unique value of a such that $\mathbf{P}\{X \leq a\}=1 / 2$ is $a=4^{1 / 3}=\sqrt[3]{4}$.
(d) As in (c), we must necessarily have $0<a<2$. Since

$$
\mathbf{P}\{X \geq a\}=1-\mathbf{P}\{X<a\}=1-F(a)=1-\frac{a^{3}}{8}
$$

we find that in order for $\mathbf{P}\{X \geq a\}=1 / 4$ we must have

$$
1-\frac{a^{3}}{8}=\frac{1}{4}
$$

implying that $a^{3}=6$. Thus, the unique value of a such that $\mathbf{P}\{X \geq a\}=1 / 4$ is $a=6^{1 / 3}=\sqrt[3]{6}$.
4. Let

$$
\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} \mathrm{~d} t
$$

denote the distribution function of a normally distributed random variable. Hence, we find the following.
(a) $\mathbf{P}\{X>1\}=1-\mathbf{P}\{X \leq 1\}=1-\Phi(1)=1-0.8413=0.1587$.
(b) $\mathbf{P}\{X<1\}=\mathbf{P}\{X \leq 1\}=\Phi(1)=0.8413$.
(c) $\mathbf{P}\{X \leq 1\}=\Phi(1)=0.8413$.
(d) $\mathbf{P}\{-1 \leq X \leq 1\}=\mathbf{P}\{X \leq 1\}-\mathbf{P}\{X<-1\}=\mathbf{P}\{X \leq 1\}-\mathbf{P}\{X \leq-1\}=\Phi(1)-\Phi(-1)=$ (0.8413) $-(1-0.8413)=0.8413-0.1587=0.6826$.
(e) $\mathbf{P}\{X \leq 2\}=\Phi(2)=0.9772$.
(f) $\mathbf{P}\{X \geq-2\}=\mathbf{P}\{X \leq 2\}=\Phi(2)=0.9772$.
(g) $\mathbf{P}\{-2 \leq X<3\}=\mathbf{P}\{X<3\}-\mathbf{P}\{X<-2\}=\mathbf{P}\{X \leq 3\}-\mathbf{P}\{X \leq-2\}=\Phi(3)-\Phi(-2)=$ (0.9987) $-(1-0.9772)=0.9987-0.0228=0.9759$.
(h) $\mathbf{P}\{-1 \leq X \leq 3\}=\mathbf{P}\{X<3\}-\mathbf{P}\{X<-1\}=\mathbf{P}\{X \leq 3\}-\mathbf{P}\{X \leq-1\}=\Phi(3)-\Phi(-1)=$ $0.9987-0.1587=0.8400$.
5. (a) Let $A_{j}, j=1,2,3$, denote the event that the lifetime of the j th TV lasts for at least two years. Therefore, since the TVs are selected at random and the TV lifetimes are independent, we find

$$
\mathbf{P}\left\{A_{1}\right\}=\mathbf{P}\left\{A_{2}\right\}=\mathbf{P}\left\{A_{3}\right\}=\mathbf{P}\{X \geq 2\}=\int_{2}^{\infty} f(x) \mathrm{d} x=\int_{2}^{\infty} \frac{1}{2} e^{-x / 2} \mathrm{~d} x=-\left.e^{-x / 2}\right|_{2} ^{\infty}=\frac{1}{e}
$$

Hence, the probability that all three TVs last for at least two years is

$$
\mathbf{P}\left\{A_{1} \cap A_{2} \cap A_{3}\right\}=\mathbf{P}\left\{A_{1}\right\} \mathbf{P}\left\{A_{2}\right\} \mathbf{P}\left\{A_{3}\right\}=\left(\frac{1}{e}\right)^{3}=e^{-3}
$$

(b) Let $B_{j}, j=1,2,3$, denote the event that the lifetime of the j th TV lasts for less than one year. Therefore, since the TVs are selected at random and the TV lifetimes are independent, we find
$\mathbf{P}\left\{B_{1}\right\}=\mathbf{P}\left\{B_{2}\right\}=\mathbf{P}\left\{B_{3}\right\}=\mathbf{P}\{X<1\}=\int_{-\infty}^{1} f(x) \mathrm{d} x=\int_{0}^{1} \frac{1}{2} e^{-x / 2} \mathrm{~d} x=-\left.e^{-x / 2}\right|_{0} ^{1}=1-e^{-1 / 2}$.
Hence, the probability that exactly one TV last for less than one year
\mathbf{P} \{exactly one TV lasts for less than one year\}

$$
\begin{aligned}
& =\mathbf{P}\left\{B_{1} \cap B_{2}^{c} \cap B_{3}^{c} \text { or } B_{1}^{c} \cap B_{2} \cap B_{3}^{c} \text { or } B_{1}^{c} \cap B_{2}^{c} \cap B_{3}\right\} \\
& =\mathbf{P}\left\{B_{1} \cap B_{2}^{c} \cap B_{3}^{c}\right\}+\mathbf{P}\left\{B_{1}^{c} \cap B_{2} \cap B_{3}^{c}\right\}+\mathbf{P}\left\{B_{1}^{c} \cap B_{2}^{c} \cap B_{3}\right\} \\
& =\mathbf{P}\left\{B_{1}\right\} \mathbf{P}\left\{B_{2}^{c}\right\} \mathbf{P}\left\{B_{3}^{c}\right\}+\mathbf{P}\left\{B_{1}^{c}\right\} \mathbf{P}\left\{B_{2}\right\} \mathbf{P}\left\{B_{3}^{c}\right\}+\mathbf{P}\left\{B_{1}^{c}\right\} \mathbf{P}\left\{B_{2}^{c}\right\} \mathbf{P}\left\{B_{3}\right\} \\
& =\left(1-e^{-1 / 2}\right)\left(e^{-1 / 2}\right)^{2}+\left(1-e^{-1 / 2}\right)\left(e^{-1 / 2}\right)^{2}+\left(1-e^{-1 / 2}\right)\left(e^{-1 / 2}\right)^{2} \\
& =3 e^{-1}\left(1-e^{-1 / 2}\right) .
\end{aligned}
$$

6. (You may want to draw a tree diagram to help interpret the solution.) Let A be the event that a randomly selected Toyota vehicle is recalled. Let B_{1} be the event that a randomly selected Toyota vehicle is a car, let B_{2} be the event that a randomly selected Toyota vehicle is a truck, and let B_{3} be the event that a randomly selected Toyota vehicle is a van. We are told that $\mathbf{P}\left\{B_{1}\right\}=0.65, \mathbf{P}\left\{B_{2}\right\}=0.20$, and $\mathbf{P}\left\{B_{3}\right\}=0.15$. We are also told that $\mathbf{P}\left\{A \mid B_{1}\right\}=0.10$, $\mathbf{P}\left\{A \mid B_{2}\right\}=0.08$, and $\mathbf{P}\left\{A \mid B_{3}\right\}=0.12$. We want to determine $\mathbf{P}\left\{B_{2} \mid A\right\}$. Using Bayes' Rule we find

$$
\begin{aligned}
\mathbf{P}\left\{B_{2} \mid A\right\}=\frac{\mathbf{P}\left\{A \mid B_{2}\right\} \mathbf{P}\left\{B_{2}\right\}}{\mathbf{P}\{A\}} & =\frac{\mathbf{P}\left\{A \mid B_{2}\right\} \mathbf{P}\left\{B_{2}\right\}}{\mathbf{P}\left\{A \mid B_{1}\right\} \mathbf{P}\left\{B_{1}\right\}+\mathbf{P}\left\{A \mid B_{2}\right\} \mathbf{P}\left\{B_{2}\right\}+\mathbf{P}\left\{A \mid B_{3}\right\} \mathbf{P}\left\{B_{3}\right\}} \\
& =\frac{(0.08)(0.20)}{(0.10)(0.65)+(0.08)(0.20)+(0.12)(0.15)} \\
& =\frac{16}{99} \doteq 0.161616 .
\end{aligned}
$$

