Math 302.102 Fall 2010
Solutions to Assignment \#3

1. Let A be the event that a randomly selected person is a man so that A^{c} is the event that a randomly selected person is a woman. Let B be the event that a person is colour blind. We are told that $\mathbf{P}\{B \mid A\}=0.05$ and $\mathbf{P}\left\{B \mid A^{c}\right\}=0.0025$.
(a) If men and women each make up the same proportion of the population, then $\mathbf{P}\{A\}=0.5$ and $\mathbf{P}\left\{A^{c}\right\}=0.5$, so that Bayes' Rule tells us that

$$
\begin{aligned}
\mathbf{P}\{A \mid B\}=\frac{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}}{\mathbf{P}\{B\}}=\frac{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}}{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}+\mathbf{P}\left\{B \mid A^{c}\right\} \mathbf{P}\left\{A^{c}\right\}} & =\frac{(0.05)(0.5)}{(0.05)(0.5)+(0.0025)(0.5)} \\
& =\frac{20}{21} \doteq 0.952381 .
\end{aligned}
$$

(b) If there are twice as many women as men in this population, then $\mathbf{P}\{A\}=1 / 3, \mathbf{P}\left\{A^{c}\right\}=2 / 3$, and Bayes' Rule tells us that

$$
\begin{aligned}
\mathbf{P}\{A \mid B\}=\frac{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}}{\mathbf{P}\{B\}}=\frac{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}}{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}+\mathbf{P}\left\{B \mid A^{c}\right\} \mathbf{P}\left\{A^{c}\right\}} & =\frac{(0.05)(1 / 3)}{(0.05)(1 / 3)+(0.0025)(2 / 3)} \\
& =\frac{10}{11} \doteq 0.909091
\end{aligned}
$$

2. Let A be the event that a randomly selected chip is good so that A^{c} is the event that a randomly selected chip is bad. Let B be the event that a chip passes the cheap chip test. We are told that $\mathbf{P}\{A\}=0.8$ and $\mathbf{P}\left\{A^{c}\right\}=0.2$. Since all good chips pass the cheap chip test, $\mathbf{P}\{B \mid A\}=1$, but since 10% of bad chips also pass the cheap chip test, we have $\mathbf{P}\left\{B \mid A^{c}\right\}=0.1$.
(a) Using Bayes' Rule we find

$$
\begin{aligned}
\mathbf{P}\{A \mid B\}=\frac{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}}{\mathbf{P}\{B\}}=\frac{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}}{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}+\mathbf{P}\left\{B \mid A^{c}\right\} \mathbf{P}\left\{A^{c}\right\}} & =\frac{(1)(0.8)}{(1)(0.8)+(0.1)(0.2)} \\
& =\frac{40}{41} \doteq 0.975609
\end{aligned}
$$

(b) If the company sells all chips which pass the cheap chip test, then the percentage of chips sold that are bad is simply

$$
\mathbf{P}\left\{A^{c} \mid B\right\}=1-\mathbf{P}\{A \mid B\}=1-\frac{40}{41}=\frac{1}{41}
$$

3. Let A be the event that a randomly selected person has the disease so that A^{c} is the event that a randomly selected person does not have the disease. Let B be the event that that the laboratory test on the blood sample returns a positive result. We are told that $\mathbf{P}\{A\}=0.01$ so that $\mathbf{P}\left\{A^{c}\right\}=0.99$. We are also told that $\mathbf{P}\{B \mid A\}=0.95$ and $\mathbf{P}\left\{B \mid A^{c}\right\}=0.02$. Using Bayes' Rule we find

$$
\begin{aligned}
\mathbf{P}\{A \mid B\}=\frac{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}}{\mathbf{P}\{B\}}=\frac{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}}{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}+\mathbf{P}\left\{B \mid A^{c}\right\} \mathbf{P}\left\{A^{c}\right\}} & =\frac{(0.95)(0.01)}{(0.95)(0.01)+(0.02)(0.99)} \\
& =\frac{95}{293} \doteq 0.324232 .
\end{aligned}
$$

4. The key to solving this problem is to realize that the event A from the previous problem needs to change. No longer is the patient who walks into the doctor's office "randomly selected from the population." Hence, we take A to be the event that the patient has the disease. The doctor's opinion is that $\mathbf{P}\{A\}=0.3$. If the blood test result is positive, then Bayes' Rule implies

$$
\begin{aligned}
\mathbf{P}\{A \mid B\}=\frac{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}}{\mathbf{P}\{B\}}=\frac{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}}{\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}+\mathbf{P}\left\{B \mid A^{c}\right\} \mathbf{P}\left\{A^{c}\right\}} & =\frac{(0.95)(0.30)}{(0.95)(0.30)+(0.02)(0.70)} \\
& =\frac{285}{299} \doteq 0.953177 .
\end{aligned}
$$

5. For $j=1,2, \ldots$, let A_{j} be the event that a 3 appears on roll j, let B_{j} be the event that a 1 or a 6 appears on roll j, let C_{j} be the event that a 2 appears on roll j, let D_{j} be the event that a 4 appears on roll j, and let E_{j} be the event that a 5 appears on roll j. If W denotes the event that Player A wins, then the Law of Total Probability implies

$$
\begin{aligned}
\mathbf{P}\{W\}=\mathbf{P}\left\{W \mid A_{1}\right\} \mathbf{P}\left\{A_{1}\right\}+\mathbf{P}\left\{W \mid B_{1}\right\} & \mathbf{P}\left\{B_{1}\right\}+\mathbf{P}\left\{W \mid C_{1}\right\} \mathbf{P}\left\{C_{1}\right\} \\
& +\mathbf{P}\left\{W \mid D_{1}\right\} \mathbf{P}\left\{D_{1}\right\}+\mathbf{P}\left\{W \mid E_{1}\right\} \mathbf{P}\left\{E_{1}\right\}
\end{aligned}
$$

Since Player A wins immediately if a 3 appears on the first roll, $\mathbf{P}\left\{W \mid A_{1}\right\}=1$, and since Player A loses immediately if a 1 or a 6 appears on the first roll, $\mathbf{P}\left\{W \mid B_{1}\right\}=0$. Furthermore, since the die is fair, $\mathbf{P}\left\{A_{1}\right\}=\mathbf{P}\left\{C_{1}\right\}=\mathbf{P}\left\{D_{1}\right\}=\mathbf{P}\left\{E_{1}\right\}=1 / 6$. Therefore,

$$
\mathbf{P}\{W\}=\frac{1}{6}+\frac{1}{6} \mathbf{P}\left\{W \mid C_{1}\right\}+\frac{1}{6} \mathbf{P}\left\{W \mid D_{1}\right\}+\frac{1}{6} \mathbf{P}\left\{W \mid E_{1}\right\} .
$$

The next observation is that $\mathbf{P}\left\{W \mid C_{1}\right\}=\mathbf{P}\left\{W \mid D_{1}\right\}=\mathbf{P}\left\{W \mid E_{1}\right\}$. If Player A rolls a 2 initially, then the only way for Player A to win is if a 2 is rolled before a 3 on subsequent rolls. Similarly, if Player A rolls a 4 initially, then the only way for Player A to win is if a 4 is rolled before a 3 on subsequent rolls, and if Player A rolls a 5 initially, then the only way for Player A to win is if a 5 is rolled before a 3 on subsequent rolls. Since the die is fair, all of these events have the same probability. Thus,

$$
\mathbf{P}\{W\}=\frac{1}{6}+\frac{1}{2} \mathbf{P}\left\{W \mid C_{1}\right\} .
$$

The remaining step is to compute $\mathbf{P}\left\{W \mid C_{1}\right\}$. It is reasonable to guess that $\mathbf{P}\left\{W \mid C_{1}\right\}=1 / 2$. This is because if a 2 is rolled initially, then the only way for Player A to win is if a 2 appears before a 3 on subsequent rolls. Since only a 2 or 3 matter (all other numbers cause a re-roll), and since 2 and 3 are both equally likely, we must have $\mathbf{P}\left\{W \mid C_{1}\right\}=1 / 2$. Alternatively, we can sum up an infinite series as follows.

Let $F_{j}=B_{j} \cap D_{j} \cap E_{j}$ be the event that $1,4,5$, or 6 appears on roll j. Then, using the fact that the results of subsequent rolls are independent, we find

$$
\begin{aligned}
\mathbf{P}\left\{W \mid C_{1}\right\} & =\mathbf{P}\left\{C_{2}\right\}+\mathbf{P}\left\{F_{2}\right\} \mathbf{P}\left\{C_{3}\right\}+\mathbf{P}\left\{F_{2}\right\} \mathbf{P}\left\{F_{3}\right\} \mathbf{P}\left\{C_{4}\right\}+\cdots \\
& =\frac{1}{6}+\frac{4}{6} \cdot \frac{1}{6}+\left(\frac{4}{6}\right)^{2} \cdot \frac{1}{6}+\cdots \\
& =\frac{1}{6}\left[1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots\right] \\
& =\frac{1}{6} \cdot \frac{1}{1-2 / 3} \\
& =\frac{1}{2} .
\end{aligned}
$$

This implies that

$$
\mathbf{P}\{W\}=\frac{1}{6}+\frac{1}{2} \cdot \frac{1}{2}=\frac{5}{12},
$$

and so the probability that Player A loses is

$$
\mathbf{P}\left\{W^{c}\right\}=1-\frac{5}{12}=\frac{7}{12} .
$$

6. (a) Since

$$
\int_{1}^{\infty} x^{-2} \mathrm{~d} x=-\left.x^{-1}\right|_{1} ^{\infty}=0-(-1)=1
$$

we see that taking $c=1$ makes f a legitimate probability density.
(b) Since

$$
\int_{1}^{\infty} x^{-1} \mathrm{~d} x=\left.\ln (x)\right|_{1} ^{\infty}=\infty-0=\infty
$$

we see that there is no such c that makes f a legitimate probability density.
(c) Using integration-by-parts twice (see Prerequisite Review Handout) gives

$$
\int x^{2} e^{-x} \mathrm{~d} x=-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}
$$

Therefore, since
$\int_{-1}^{1} x^{2} e^{-x} \mathrm{~d} x=\left.\left[-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}\right]\right|_{-1} ^{1}=\left[-e^{-1}-2 e^{-1}-2 e^{-1}\right]-\left[-e^{1}+2 e^{1}-2 e^{1}\right]=e-5 e^{-1}$,
we see that taking $c=\left(e-5 e^{-1}\right)^{-1}=e /\left(e^{2}-5\right)$ makes f a legitimate probability density.
(d) As in (c), using integration-by-parts twice gives

$$
\int_{0}^{\infty} x^{2} e^{-x} \mathrm{~d} x=\left.\left[-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}\right]\right|_{0} ^{\infty}=0-(-2)=2
$$

and so we see that taking $c=1 / 2$ makes f a legitimate probability density.
(e) Since

$$
\int_{-\infty}^{0} x e^{x} \mathrm{~d} x=\left.\left[x e^{x}-e^{x}\right]\right|_{-\infty} ^{0}=(0-1)-(0-0)=-1
$$

by see that taking $c=-1$ makes f a legitimate probability density. Note that $x e^{x} \leq 0$ for $x \leq 0$. This means that if we multiply $x e^{x}$ by a negative number it will always be non-negative. Hence, $f(x)=-x e^{x}$ for $x \leq 0$ is a non-negative function that integrates to 1.
(f) Note that the function $x e^{x}$ assumes both positive and negative values when $-1 \leq x \leq 1$. This means that there is no single value of c that could be multiplied by $x e^{x}$ to make it strictly non-negative. Hence, there is no possible value of c that makes f a legitimate probability density.

