Math 302.102 Fall 2010
Assignment \#7
This assignment is due at the beginning of class on Monday, November 22, 2010.

1. Let $0<a<b$ be given positive constants, and suppose that the random vector (X, Y) has joint density function

$$
f_{X, Y}(x, y)= \begin{cases}c(y-x), & \text { if } a<x<y<b \\ 0, & \text { otherwise }\end{cases}
$$

where the value of the normalizing constant c is chosen so that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=1$.
(a) Determine the value of c. (Of course, your answer will depend on a and b.)
(b) Determine $f_{Y}(y)$, the marginal density function of Y, and $\mathbb{E}(Y)$, the expected value of Y.
(c) Determine $f_{X}(x)$, the marginal density function of X, and $\mathbb{E}(X)$, the expected value of X.
2. Suppose that the random vector (X, Y) is jointly distributed with joint density function

$$
f_{X, Y}(x, y)= \begin{cases}2 e^{-x-y}, & \text { if } 0<x<y<\infty \\ 0, & \text { otherwise }\end{cases}
$$

(a) Determine the marginal density functions $f_{X}(x)$ and $f_{Y}(y)$.
(b) Based on your answer to (a), are X and Y independent random variables? Justify your answer.
(c) Use the result of (a) to calculate $\mathbb{E}(X)$ and $\mathbb{E}(Y)$.

