Stat 862 (Winter 2007)
Pólya's Theorem
Let $p_{2 n}:=p_{2 n}(0,0):=P\left\{X_{2 n}=0 \mid X_{0}=0\right\}$ and suppose that $d=2$. To return to the origin, the walker must take

- the same number of steps left as right, AND
- the same number of steps up as down.

Therefore, every path that returns in $2 n$ steps has probability $\left(\frac{1}{4}\right)^{2 n}$ of occurring. The number of paths with k steps left, k steps right, $n-k$ steps up, $n-k$ steps down is

$$
\binom{2 n}{k, k, n-k, n-k}:=\frac{(2 n)!}{k!k!(n-k)!(n-k)!},
$$

and so

$$
\begin{aligned}
p_{2 n}=\left(\frac{1}{4}\right)^{2 n} \sum_{k=0}^{n} \frac{(2 n)!}{k!k!(n-k)!(n-k)!} & =\left(\frac{1}{4}\right)^{2 n} \sum_{k=0}^{n} \frac{(2 n)!}{n!n!} \frac{n!n!}{k!k!(n-k)!(n-k)!} \\
& =\left(\frac{1}{4}\right)^{2 n}\binom{n}{n} \sum_{k=0}^{n}\binom{n}{k}^{2}
\end{aligned}
$$

Note that

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

and so

$$
p_{2 n}=\left(\frac{1}{2^{2 n}}\binom{2 n}{n}\right)^{2}
$$

Thus, using Stirling's formula,

$$
\sum_{n} p_{2 n} \sim \sum_{n} \frac{1}{\pi n}=\infty
$$

Notice that this is just the square of the one dimensional result! That is, simple random walk in two dimensions is recurrent.

Suppose now that $d=3$. In order to return to the origin, the walker must take

- the same number of steps left as right, AND
- the same number of steps up as down, AND
- the same number of steps forward as backward.

Therefore, every path that returns to the origin in $2 n$ steps has probability $\left(\frac{1}{6}\right)^{2 n}$ of occurring. The number of paths with k steps left, k steps right, j steps up, j steps down, $n-k-j$ steps forward, $n-j-k$ steps backward is

$$
\binom{2 n}{k, k, j, j, n-k-j, n-k-j}:=\frac{(2 n)!}{k!k!j!j!(n-k-j)!(n-k-j)!}
$$

and so

$$
p_{2 n}=\frac{1}{6^{2 n}} \sum_{\substack{j, k \\ j+k \leq n}} \frac{(2 n)!}{k!k!j!j!(n-j-k)!(n-j-k)!}=\frac{1}{2^{2 n}}\binom{2 n}{n} \sum_{\substack{j, k \\ j+k \leq n}}\left(\frac{1}{3^{n}} \frac{n!}{k!j!(n-k-j)!}\right)^{2} .
$$

Now,

$$
\begin{aligned}
\frac{1}{3^{n}}\binom{n}{k, j, n-j-k} & =\frac{1}{3^{n}} \frac{n!}{k!j!(n-j-k)!} \\
& =\text { probability of placing } n \text { balls in } 3 \text { boxes }
\end{aligned}
$$

This is maximized when $k, j,(n-k-j)$ are as close to $\frac{n}{3}$ as possible. Therefore,

$$
p_{2 n} \leq \frac{1}{2^{2 n}}\binom{2 n}{n}\left(\frac{1}{3^{n}} \frac{n!}{\left[\frac{n}{3}\right]!\left[\frac{n}{3}\right]!\left[\frac{n}{3}\right]!}\right) \underbrace{\left(\sum_{j, k} \frac{1}{3^{n}} \frac{n!}{k!j!(n-j-k)!}\right)}_{=1 \text { since it is a distribution }}
$$

and so

$$
p_{2 n} \leq \frac{1}{2^{2 n}}\binom{2 n}{n}\left(\frac{1}{3^{n}} \frac{n!}{\left(\left[\frac{n}{3}\right]!\right)^{3}}\right)
$$

However, Stirling's formula implies $p_{2 n} \leq \frac{K}{n^{3 / 2}}$ for some constant $K \in \mathbb{R}^{+}$, and so

$$
\sum_{n} p_{2 n} \leq K \sum_{n} \frac{1}{n^{3 / 2}}<\infty
$$

That is, simple random walk in three dimensions is transient.

