Stat 862 (Winter 2007)
Markov Chain Monte Carlo Methods

Suppose that T is the set of $N \times N$ matrices whose entries are either 0 or 1 and such that no two 1 s are adjacent. If $N=2$, then T consists of the following 7 matrices:

$$
T=\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\} .
$$

If we label the seven elements of T by $\{1,2,3,4,5,6,7\}$, then we can define a symmetric, irreducible, aperiodic Markov chain on T via the following transition matrix:

$$
\mathbf{P}=\left[\begin{array}{ccccccc}
0 & 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 & 0 & 0 \\
1 / 4 & 1 / 2 & 0 & 0 & 0 & 1 / 4 & 0 \\
1 / 4 & 0 & 1 / 2 & 0 & 0 & 0 & 1 / 4 \\
1 / 4 & 0 & 0 & 1 / 2 & 0 & 0 & 1 / 4 \\
1 / 4 & 0 & 0 & 0 & 1 / 2 & 1 / 4 & 0 \\
0 & 1 / 4 & 0 & 0 & 1 / 4 & 1 / 2 & 0 \\
0 & 0 & 1 / 4 & 1 / 4 & 0 & 0 & 1 / 2
\end{array}\right]
$$

Note that \mathbf{P} does, in fact, define a symmetric, irreducible, aperiodic Markov chain on T.

We can now use the methods of Chapter 1 to analyze the long-run behaviour of this Markov chain. Since the Markov chain is irreducible and aperiodic, there exists a unique invariant probability vector $\bar{\pi}$ satisfying $\bar{\pi} \mathbf{P}=\bar{\pi}$ and

$$
\lim _{n \rightarrow \infty} \bar{\phi}_{0} \mathbf{P}^{n}=\bar{\pi}
$$

for any initial probability vector $\bar{\phi}_{0}$.

Solving the 7×7 system by hand is possible, though tedious, and gives

$$
\bar{\pi}=\left(\frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}\right)
$$

which is to be expected.

Using Maple to compute high powers of \mathbf{P} we find that

- \mathbf{P}^{30} gives $\bar{\pi} \approx(0.14,0.14,0.14,0.14,0.14,0.14,0.14)$ which is accurate to 2 decimal places,
- \mathbf{P}^{40} gives $\bar{\pi} \approx(0.143,0.143,0.143,0.143,0.143,0.143,0.143)$ which is accurate to 3 decimal places,
- \mathbf{P}^{100} gives $\bar{\pi} \approx(0.142857,0.142857,0.142857,0.142857,0.142857,0.142857,0.142857)$ which is accurate to 6 decimal places.

