Stat 862 (Winter 2007)
Assignment \#2
This problem should be done with the help of a computer (say, MAPLE or MATLAB). It will illustrate the various long term behaviour of Markov chains.

For each of the following transition matrices, compute \mathbf{P}^{n} for a sufficiently large power n and interpret the results. Does

$$
\lim _{n \rightarrow \infty} \mathbf{P}^{n}
$$

exist? Does

$$
\lim _{n \rightarrow \infty} p_{n}(i, j)=\pi_{j}
$$

independent of i ?
(a)

$$
\mathbf{P}=\left[\begin{array}{ccc}
3 / 4 & 0 & 1 / 4 \\
1 / 8 & 1 / 8 & 3 / 4 \\
1 / 12 & 1 / 4 & 2 / 3
\end{array}\right]
$$

(b)

$$
\mathbf{P}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 / 5 & 4 / 5 & 0 & 0 \\
1 / 6 & 0 & 1 / 6 & 2 / 3 \\
0 & 1 / 10 & 3 / 5 & 3 / 10
\end{array}\right]
$$

(c) Simple random walk on $S=\{0,1,2,3,4\}$ with reflecting boundaries.

$$
\mathbf{P}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

(d) Simple random walk on $S=\{0,1,2,3,4\}$ with absorbing boundaries.

$$
\mathbf{P}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(e)

$$
\mathbf{P}=\left[\begin{array}{ccccc}
3 / 4 & 0 & 1 / 4 & 0 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 \\
1 / 8 & 0 & 2 / 3 & 0 & 5 / 24 \\
0 & 5 / 6 & 0 & 1 / 6 & 0 \\
0 & 0 & 1 / 7 & 0 & 6 / 7
\end{array}\right]
$$

