Stat 862: Assignment #2

Problem #1: Suppose X is a random variable and \mathcal{F} is a σ -algebra such that

 $\mathbb{P}\{X \neq \mathbb{E}(X|\mathcal{F})\} > 0.$

(a) Show that for every $c \in \mathbb{R}$,

$$\mathbb{E}[|\mathbb{E}(X-c|\mathcal{F})|] \leq \mathbb{E}(|X-c|).$$

(b) Show that there exists some $c \in \mathbb{R}$,

$$\mathbb{E}[|\mathbb{E}(X-c|\mathcal{F})|] < \mathbb{E}(|X-c|).$$

(c) If X and Y are random variables, then we define $\mathbb{E}(X|Y)$ to be $\mathbb{E}(X|Y) = \mathbb{E}(X|\sigma(Y))$. Suppose that X and Y are such that $\mathbb{E}(X|Y) = Y$ a.s. and $\mathbb{E}(Y|X) = X$ a.s. Prove that X = Y a.s. (*Hint*: Assume $X \neq Y$ and consider X - c where c is as in (b) and $\mathcal{F} = \sigma(Y)$.)

Problem #2: Suppose that M_n is a discrete time martingale with respect to the filtration $\{\mathcal{F}_n\}$, and that $\mathbb{E}(M_n^2) < \infty$ for each n. Show that

$$\mathbb{E}[(M_n - M_0)^2] = \sum_{j=1}^n \mathbb{E}[(M_j - M_{j-1})^2].$$

Hint: You may first want to show that for every j < k,

$$\mathbb{E}[(M_j - M_{j-1})(M_k - M_{k-1})] = 0.$$

Problem #3: In this problem, we introduce the concept of a continuous time martingale. Suppose that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. A filtration $\{\mathcal{F}_t, t \ge 0\}$ is a collection of sub- σ -algebras of \mathcal{F} with the property that $\mathcal{F}_s \subseteq \mathcal{F}_t$ for every $0 \le s \le t$. A continuous time stochastic process $X = \{X_t, t \ge 0\}$ is said to be *adapted* to the filtration $\{\mathcal{F}_t, t \ge 0\}$ if for every $t \ge 0$, the random variable X_t is \mathcal{F}_t -measurable. We say that X is a martingale with respect to the filtration $\{\mathcal{F}_t, t \ge 0\}$ if

- X is adapted to $\{F_t, t \ge 0\},\$
- $\mathbb{E}(|X_t|) < \infty$ for every t, and
- $\mathbb{E}(X_t | \mathcal{F}_s) = X_s$ for every $0 \le s < t$.
- (a) Suppose that $B = \{B_t, t \ge 0\}$ is a Brownian motion. Show that B is a martingale with respect to the natural Brownian filtration $\mathcal{F}_t = \sigma(B_s, s \le t)$. As always, $\mathcal{F}_0 = \{\emptyset, \Omega\}$.
- (b) If B is a Brownian motion as in (a), show that the process X defined by $X_t = B_t^2 t$ is also a martingale with respect to the Brownian filtration.
- (c) If B is a Brownian motion as in (a) and c is a constant, show that the process Y defined by

$$Y_t = \exp\left(cB_t - \frac{1}{2}c^2t\right)$$

is also a martingale with respect to the Brownian filtration.