Problem \#1: Suppose that X_{1}, X_{2}, \ldots are independent and identically distributed random variables with $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2$. Set $S_{0}=0$, and for $n \in \mathbb{N}$, let

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

so that the stochastic process $\left\{S_{n}, n=0,1,2, \ldots\right\}$ is a simple random walk on \mathbb{Z}. Compute the characteristic function of the random variable S_{n}.

Solution: Recall that the characteristic function of the random variable S_{n} is given by $\varphi_{S_{n}}(u)=\mathbb{E}\left(\exp \left(i u S_{n}\right)\right)$. Thus, if $n=0$, then $\varphi_{S_{0}}(u)=1$, and for $n \geq 1$, we have

$$
\begin{aligned}
\varphi_{S_{n}}(u)=\mathbb{E}\left(\exp \left(i u \sum_{i=1}^{n} X_{i}\right)\right) & =\prod_{i=1}^{n} \mathbb{E}\left(\exp \left(i u X_{i}\right)\right) \quad \text { since } X_{i} \text { are independent } \\
& =\left[\mathbb{E}\left(\exp \left(i u X_{1}\right)\right)\right]^{n} \quad \text { since } X_{i} \text { are indentically distributed } \\
& =\left[\frac{1}{2} e^{i u}+\frac{1}{2} e^{-i u}\right]^{n} \\
& =\cos ^{n}(u)
\end{aligned}
$$

Problem \#2: Suppose that $\Omega=[0,1], \mathcal{F}$ are the Borel sets of $[0,1]$, and \mathbb{P} is the uniform probability (i.e., Lebesgue measure) on $[0,1]$, and assume that \mathcal{F} is complete with respect to \mathbb{P}. For $t \in[0,1]$, and $\omega \in[0,1]$, define $X_{t}(\omega)=0$ and $Y_{t}(\omega)=\mathbb{1}\{t=\omega\}$. Show that X and Y are versions of each other, but that they are not indistinguishable.

Solution: If $t \in[0,1]$, then since \mathbb{P} is the uniform probability, we see that $\mathbb{P}\left(X_{t} \neq Y_{t}\right)=$ $\mathbb{P}(\{w: \omega=t\})=0$ so that X and Y are versions of each other. On the other hand, for every $\omega \in[0,1]$, there exists a $t \in[0,1]$ (namely $t=\omega$) such that the trajectory $Y(\omega)$ is not continuous at t. Therefore, $\mathbb{P}\left(X_{t}=Y_{t} \forall t\right)=0$ so that X and Y are not indistinguishable.

Problem \#3: Suppose that Y is a version of X, and that both X and Y have rightcontinuous sample paths. Show that X and Y are indistinguishable.

Solution: For each $t \geq 0$, let $Z_{t}=X_{t}-Y_{t}$ so that Z is a version of 0 , and that Z has right-continuous sample paths. In order to show that Z is indistinguishable from 0 , we must show that there exists a single null set N such if $\omega \notin N$, then $Z_{t}=0 \forall t$.

For each t, let $M_{t}=\left\{\omega: Z_{t} \neq 0\right\}$, and note that $\mathbb{P}\left(M_{t}\right)=0$ since Z is a version of 0 . Let

$$
M=\bigcup_{t \in \mathbb{Q}} M_{t}
$$

which has $\mathbb{P}(M)=0$ by the countable subadditivity of \mathbb{P}. Finally, let $A=\{\omega: Z(\omega)$ is not right-continuous $\}$, and set $N=A \cup M$; hence $\mathbb{P}(N)=0$.
(Recall that we write $Z(w)$ to denote the trajectory of $t \mapsto Z_{t}$ at ω.)
Note that $Z_{t}=0$ for all $t \in \mathbb{Q}$ and $\omega \notin N$. On the other hand, suppose that $t \notin \mathbb{Q}$ and $\omega \notin N$, and let t_{n} be a sequence of rational numbers decreasing to t. Therefore, $Z_{t_{n}}(\omega)=0$ for each $n=1,2, \ldots$, so by the right-continuity of the trajectory $Z(w)$ we conclude that

$$
Z_{t}(\omega)=\lim _{n \rightarrow \infty} Z_{t_{n}}(\omega)=0 .
$$

Thus, $\mathbb{P}\left(\left\{w: Z_{t}=0 \forall t\right\}\right)=\mathbb{P}\left(N^{c}\right)=1$ so that Z is indistinguishable from 0 as required.

