Statistics 852 Fall 2011 Midterm Exam - Solutions

1. Since $M_{X}(t)=\mathbb{E}\left(e^{t X}\right)$ exists for $t \in(-h, h)$ for some $h>0$ we know that

$$
M_{X}^{\prime}(0)=\mathbb{E}(X) \quad \text { and } \quad M_{X}^{\prime \prime}(0)=\mathbb{E}\left(X^{2}\right)
$$

Moreover, it is always the case that $M_{X}(0)=1$. From the chain rule, it follows that

$$
\frac{d}{d t} \log M_{X}(t)=\frac{M_{X}^{\prime}(t)}{M_{X}(t)}
$$

and

$$
\frac{d^{2}}{d t^{2}} \log M_{X}(t)=\frac{d}{d t}\left[\frac{M_{X}^{\prime}(t)}{M_{X}(t)}\right]=\frac{M_{X}^{\prime \prime}(t) M_{X}(t)-M_{X}^{\prime}(t) M_{X}^{\prime}(t)}{M_{X}(t)^{2}}
$$

Therefore,

$$
\left.\frac{d}{d t} \log M_{X}(t)\right|_{t=0}=\frac{M_{X}^{\prime}(0)}{M_{X}(0)}=M_{X}^{\prime}(0)=\mathbb{E}(X)
$$

and

$$
\begin{aligned}
\left.\frac{d^{2}}{d t^{2}} \log M_{X}(t)\right|_{t=0}=\frac{M_{X}^{\prime \prime}(0) M_{X}(0)-M_{X}^{\prime}(0) M_{X}^{\prime}(0)}{M_{X}(0)^{2}}=M_{X}^{\prime \prime}(0)-\left[M_{X}^{\prime}(0)\right]^{2} & =\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2} \\
& =\operatorname{Var}(X)
\end{aligned}
$$

as required.
2. (a) If α is known and β is unknown, then

$$
f(x \mid \beta)=\beta \alpha^{\beta} x^{-\beta-1} I(x>\alpha)=x^{-1} I(x>\alpha) \cdot \beta \alpha^{\beta} \cdot e^{-\beta \log x} .
$$

Hence, if we take

$$
h(x)=x^{-1} I(x>\alpha), \quad c(\beta)=\beta \alpha^{\beta}, \quad w(\beta)=\beta, \quad t(x)=-\log x
$$

then we see that

$$
f(x \mid \beta)=h(x) c(\beta) e^{w(\beta) t(x)}
$$

proving that $\{f(x \mid \beta): \beta>0\}$ does, in fact, form an exponential family.
2. (b) If α is unknown and β is known, then

$$
f(x \mid \alpha)=\beta \alpha^{\beta} x^{-\beta-1} I(x>\alpha)=\beta x^{-\beta-1} \cdot \alpha^{\beta} \cdot I(x>\alpha)
$$

Since the support of the density, namely $\{x: x>\alpha\}$, depends on the parameter α, we conclude that $\{f(x \mid \alpha): \alpha>0\}$ does not form an exponential family.
2. (c) In order to show that $\mathbb{E}\left(X^{2}\right)$ does not exist for $0<\beta \leq 2$, we will consider the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{2} f(x \mid \alpha, \beta) d x=\int_{\alpha}^{\infty} x^{2} \cdot \beta \alpha^{\beta} x^{-\beta-1} d x=\beta \alpha^{\beta} \int_{\alpha}^{\infty} x^{1-\beta} d x \tag{*}
\end{equation*}
$$

In order to evaluate the integral, there are three separate cases to treat. First, suppose that $\beta=1$ so that

$$
(*)=\alpha \int_{\alpha}^{\infty} d x=\alpha \lim _{N \rightarrow \infty} \int_{\alpha}^{N} d x=\alpha \lim _{N \rightarrow \infty}(N-\alpha)=\infty
$$

Now suppose that $\beta=2$ so that

$$
(*)=2 \alpha^{2} \int_{\alpha}^{\infty} x^{-1} d x=2 \alpha^{2} \lim _{N \rightarrow \infty} \int_{\alpha}^{N} x^{-1} d x=2 \alpha^{2} \lim _{N \rightarrow \infty}(\log N-\log \alpha)=\infty .
$$

Finally, suppose that $\beta \in(0,1) \cup(1,2)$ so that

$$
\begin{aligned}
(*)=\beta \alpha^{\beta} \int_{\alpha}^{\infty} x^{1-\beta} d x=\beta \alpha^{\beta} \lim _{N \rightarrow \infty} \int_{\alpha}^{N} x^{1-\beta} d x & =\left.\beta \alpha^{\beta} \lim _{N \rightarrow \infty} \frac{x^{2-\beta}}{2-\beta}\right|_{x=\alpha} ^{x=N} \\
& =\frac{\beta \alpha^{\beta}}{2-\beta} \lim _{N \rightarrow \infty}\left(N^{2-\beta}-\alpha^{2-\beta}\right) \\
& =\infty
\end{aligned}
$$

since $\beta \in(0,1) \cup(1,2)$ implies $2-\beta>0$.
3. In order to show that $T\left(X_{1}, X_{2}\right)=X_{1}+X_{2}$ is not sufficient for θ, we will show that for some choice of $\left(x_{1}, x_{2}\right)$ and t, the ratio

$$
\frac{P_{\theta}\left\{\left(X_{1}, X_{2}\right)=\left(x_{1}, x_{2}\right)\right\}}{P_{\theta}\left\{T\left(X_{1}, X_{2}\right)=t\right\}}
$$

does depend on θ. Consider $t=2$ so that

$$
\begin{aligned}
P_{\theta}\left\{T\left(X_{1}, X_{2}\right)=2\right\} & =P_{\theta}\left\{X_{1}+X_{2}=2\right\} \\
& =P_{\theta}\left\{\left(X_{1}, X_{2}\right)=(1,1)\right\}+P_{\theta}\left\{\left(X_{1}, X_{2}\right)=(0,2)\right\}+P_{\theta}\left\{\left(X_{1}, X_{2}\right)=(2,0)\right\} \\
& =\theta e^{-\theta} \cdot \theta e^{-\theta}+e^{-\theta} \cdot\left(1-e^{-\theta}-\theta e^{-\theta}\right)+\left(1-e^{-\theta}-\theta e^{-\theta}\right) \cdot e^{-\theta} \\
& =2 e^{-\theta}+e^{-2 \theta}\left(\theta^{2}-2 \theta-2\right) .
\end{aligned}
$$

Consider $\left(x_{1}, x_{2}\right)=(1,1)$ so that

$$
P_{\theta}\left\{\left(X_{1}, X_{2}\right)=(1,1)\right\}=\theta e^{-\theta} \cdot \theta e^{-\theta}=\theta^{2} e^{-2 \theta}
$$

Therefore,

$$
\frac{P_{\theta}\left\{\left(X_{1}, X_{2}\right)=(1,1)\right\}}{P_{\theta}\left\{T\left(X_{1}, X_{2}\right)=2\right\}}=\frac{\theta^{2} e^{-2 \theta}}{2 e^{-\theta}+e^{-2 \theta}\left(\theta^{2}-2 \theta-2\right)}=\frac{\theta^{2}}{2 e^{\theta}+\theta^{2}-2 \theta-2}
$$

Since this ratio obviously depends on θ, we conclude that $T\left(X_{1}, X_{2}\right)=X_{1}+X_{2}$ is not sufficient for θ.

