Statistics 852 Fall 2011 Final Exam - Solutions

1. We will begin by showing that $W\left(X_{1}, \ldots, X_{n}\right)$ is an unbiased estimator of θ^{2}. This follows since

$$
\begin{aligned}
E_{\theta}\left(W\left(X_{1}, \ldots, X_{n}\right)\right)=\frac{1}{n(n-1)} E_{\theta}(T(T-1)) & =\frac{1}{n(n-1)}\left(E_{\theta}\left(T^{2}\right)-E_{\theta}(T)\right) \\
& =\frac{1}{n(n-1)}\left(\operatorname{Var}_{\theta}(T)+\left[E_{\theta}(T)\right]^{2}-E_{\theta}(T)\right) \\
& =\frac{n \theta(1-\theta)+n^{2} \theta^{2}-n \theta}{n(n-1)} \\
& =\frac{n^{2} \theta^{2}-n \theta^{2}}{n(n-1)} \\
& =\theta^{2}
\end{aligned}
$$

In order to apply the Rao-Blackwell theorem, we need to show that T is a complete and sufficient statistic for θ. One might try to argue that since $T \sim \operatorname{Bin}(n, \theta)$, the density for T follows an exponential family so that T is therefore complete and sufficient. This would be correct if the parameter space were $0<\theta<1$. However, since we are considering $0 \leq \theta \leq 1$, the density for T does not follow an exponential family for all $\theta \in[0,1]$. If $\theta \in\{0,1\}$, then the support of the distribution does depend on θ. Instead, one can use the factorization theorem to conclude that T is a sufficient statistic for θ. Completeness follows from the fact that

$$
\sum_{i=0}^{n}\binom{n}{i} \theta^{i}(1-\theta)^{n-1} g(i)=0
$$

for all $0 \leq \theta \leq 1$ if and only if $g(i)=0$ for all $i=0,1, \ldots, n$. Hence, we can now apply the Rao-Blackwell theorem (Theorem 7.3.23) to conclude that $W\left(X_{1}, \ldots, X_{n}\right)$ is the MVUE of θ^{2} since $W\left(X_{1}, \ldots, X_{n}\right)$ is a function of the sufficient and complete statistic T.
2. (a) The joint density of X_{1}, \ldots, X_{n} is

$$
f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\frac{1}{(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-i \theta\right)^{2}\right\}
$$

and so the log-likelihood function is

$$
\ell(\theta)=\log L(\theta)=\log f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-i \theta\right)^{2} .
$$

Since

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \ell(\theta)=\sum_{i=1}^{n} i\left(x_{i}-i \theta\right)=\sum_{i=1}^{n} i x_{i}-\theta \sum_{i=1}^{n} i^{2}=0
$$

if and only if

$$
\theta=\frac{\sum_{i=1}^{n} i x_{i}}{\sum_{i=1}^{n} i^{2}}
$$

and since

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} \theta^{2}} \ell(\theta)=\sum_{i=1}^{n} i^{2}<0
$$

for all θ, we conclude that the MLE of θ is

$$
\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)=\frac{\sum_{i=1}^{n} i X_{i}}{\sum_{i=1}^{n} i^{2}}
$$

as required.
(b) Since X_{1}, \ldots, X_{n} are independent, the variance of $\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)$ is

$$
\operatorname{Var}\left(\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)\right)=\frac{\sum_{i=1}^{n} i^{2} \operatorname{Var}\left(X_{i}\right)}{\left(\sum_{i=1}^{n} i^{2}\right)^{2}}=\frac{\sum_{i=1}^{n} i^{2}}{\left(\sum_{i=1}^{n} i^{2}\right)^{2}}=\frac{1}{\sum_{i=1}^{n} i^{2}}
$$

(c) The Cramér-Rao lower bound for unbiased estimation of θ is

$$
\left[\mathbb{E}_{\theta}\left(\frac{\partial}{\partial \theta} \log f\left(X_{1}, \ldots, X_{n} \mid \theta\right)\right)^{2}\right]^{-1}=\left[\sum_{i=1}^{n} \mathbb{E}_{\theta}\left(\frac{\partial}{\partial \theta} \log f\left(X_{i} \mid \theta\right)\right)^{2}\right]^{-1}
$$

where

$$
f\left(x_{i} \mid \theta\right)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(x_{i}-i \theta\right)^{2}\right\}
$$

Now,

$$
\frac{\partial}{\partial \theta} \log f\left(x_{i} \mid \theta\right)=-\frac{\partial}{\partial \theta} \frac{1}{2}\left(x_{i}-i \theta\right)^{2}=i\left(x_{i}-\theta\right)
$$

and so

$$
\begin{aligned}
\sum_{i=1}^{n} \mathbb{E}_{\theta}\left(\frac{\partial}{\partial \theta} \log f\left(X_{i} \mid \theta\right)\right)^{2}=\sum_{i=1}^{n} \mathbb{E}_{\theta}\left(i\left(X_{i}-\theta\right)\right)^{2}=\sum_{i=1}^{n} i^{2} \mathbb{E}_{\theta}\left(\left(X_{i}-\theta\right)\right)^{2} & =\sum_{i=1}^{n} i^{2} \operatorname{Var}_{\theta}\left(X_{i}\right) \\
& =\sum_{i=1}^{n} i^{2}
\end{aligned}
$$

Hence, the Cramer-Rao lower bound is attained by the variance of $\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)$.
3. (a) The joint density function of X_{1} and X_{2} is

$$
\begin{aligned}
f\left(x_{1}, x_{2} \mid \theta\right)=P_{\theta}\left(X_{1}=x_{1}, X_{2}=x_{2}\right) & =P_{\theta}\left(X_{1}=x_{1}\right) P_{\theta}\left(X_{2}=x_{2}\right) \\
& =\frac{1}{\theta^{2}} I\left(x_{1} \in\{1, \ldots, \theta\}, x_{2} \in\{1, \ldots, \theta\}\right) \\
& =\frac{1}{\theta^{2}} I\left(x_{1} \in \mathbb{N}, x_{2} \in \mathbb{N}, x_{1} \leq \theta, x_{2} \leq \theta\right) \\
& =\frac{1}{\theta^{2}} I\left(x_{1} \in \mathbb{N}, x_{2} \in \mathbb{N}, \max \left\{x_{1}, x_{2}\right\} \leq \theta\right) .
\end{aligned}
$$

Thus, by the factorization theorem, T is a sufficient statistic for θ.
(b) For $t=1,2, \ldots, \theta$, we find

$$
\begin{aligned}
P_{\theta}(T \leq t)=P_{\theta}\left(\max \left\{X_{1}, X_{2}\right\} \leq t\right) & =P_{\theta}\left(X_{1} \leq t, X_{2} \leq t\right) \\
& =P_{\theta}\left(X_{1} \leq t\right) P_{\theta}\left(X_{2} \leq t\right) \\
& =\left(\frac{t}{\theta}\right)^{2} .
\end{aligned}
$$

Thus,

$$
P_{\theta}(T=t)=P_{\theta}(T \leq t)-P_{\theta}(T \leq t-1)=\left(\frac{t}{\theta}\right)^{2}-\left(\frac{t-1}{\theta}\right)^{2}=\frac{t^{2}-(t-1)^{2}}{\theta^{2}}=\frac{2 t-1}{\theta^{2}}
$$

for $t=1,2, \ldots, \theta$.
(c) In order to show that the family of distributions of T is complete, we need to show that $E_{\theta}[g(T)]=0$ for all θ implies that $P_{\theta}(g(T)=0)=1$ for all θ. Now

$$
E_{\theta}[g(T)]=\frac{1}{\theta^{2}} \sum_{t=1}^{\theta} g(t)(2 t-1)
$$

so that $E_{\theta}[g(T)]=0$ for all θ implies that

$$
\sum_{t=1}^{\theta} g(t)(2 t-1)=0
$$

for all θ. If $\theta=1$, then

$$
0=\sum_{t=1}^{\theta} g(t)(2 t-1)=\sum_{t=1}^{1} g(t)(2 t-1)=g(1)(2-1)=g(1) .
$$

If $\theta=2$, then

$$
0=\sum_{t=1}^{\theta} g(t)(2 t-1)=\sum_{t=1}^{2} g(t)(2 t-1)=g(1)(2-1)+g(2)(4-1)=3 g(2)
$$

since $g(1)=0$. Continuing in this way shows that $g(t)=0$ for all $t=1,2, \ldots$ so that $P_{\theta}(g(T)=0)=1$ for all θ as required.
(d) By the Rao-Blackwell theorem (Theorem 7.3.23), the (unique) MVUE of θ is a function of T, say $\phi(T)$, satisfying

$$
\theta=E_{\theta}(\phi(T))=\sum_{t=1}^{\theta} \phi(t) P_{\theta}(T=t)
$$

In other words, ϕ satisfies

$$
\sum_{t=1}^{\theta} \phi(t) \frac{(2 t-1)}{\theta^{2}}=\theta \quad \text { or, equivalently, } \quad \theta^{3}=\sum_{t=1}^{\theta}(2 t-1) \phi(t)
$$

for all $\theta=1,2, \ldots$ Using the hint, we find

$$
\sum_{t=1}^{\theta}\left(3 t^{2}-3 t+1\right)=\sum_{t=1}^{\theta}(2 t-1) \phi(t)
$$

so that $\left(3 t^{2}-3 t+1\right)=(2 t-1) \phi(t)$. Thus,

$$
\phi(T)=\frac{3 T^{2}-3 T+1}{2 T-1}
$$

is the MVUE of θ.
4. (a) If $\theta=P_{\lambda}\left(X_{1} \leq 1\right)$, then

$$
\theta=P_{\lambda}\left(X_{1}=0\right)+P_{\lambda}\left(X_{1}=1\right)=e^{-\lambda}(1+\lambda)
$$

Since the MLE of λ is

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i},
$$

we conclude that the MLE of θ is

$$
\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)=e^{-\bar{X}}(1+\bar{X})
$$

(b) Since

$$
T=\sum_{i=1}^{n} X_{i} \sim \operatorname{Poisson}(n \lambda)
$$

and $\bar{X}=T / n$, we can analyze

$$
E_{\theta}\left(\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)\right)=\mathbb{E}_{\theta}\left(e^{-T / n}(1+T / n)\right)
$$

directly. That is,

$$
\begin{aligned}
E_{\theta}\left(\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)\right)=\mathbb{E}_{\theta}\left(e^{-T / n}(1+T / n)\right) & =\sum_{t=0}^{\infty} e^{-t / n}(1+t / n) \frac{e^{-n \lambda}(n \lambda)^{t}}{t!} \\
& =\sum_{t=0}^{\infty} e^{-t / n} \frac{e^{-n \lambda}(n \lambda)^{t}}{t!}+\frac{1}{n} \sum_{t=0}^{\infty} t e^{-t / n} \frac{e^{-n \lambda}(n \lambda)^{t}}{t!}
\end{aligned}
$$

Now

$$
\sum_{t=0}^{\infty} e^{-t / n} \frac{e^{-n \lambda}(n \lambda)^{t}}{t!}=e^{-n \lambda} \exp \left\{n \lambda e^{-1 / n}\right\}
$$

and

$$
\begin{aligned}
\frac{1}{n} \sum_{t=0}^{\infty} t e^{-t / n} \frac{e^{-n \lambda}(n \lambda)^{t}}{t!}=\frac{1}{n} \sum_{t=1}^{\infty} t e^{-t / n} \frac{e^{-n \lambda}(n \lambda)^{t}}{t!} & =\frac{e^{-n \lambda}}{n} \sum_{t=1}^{\infty} \frac{\left(n \lambda e^{-1 / n}\right)^{t}}{(t-1)!} \\
& =\frac{e^{-n \lambda}}{n}\left(n \lambda e^{-1 / n}\right) \sum_{t=1}^{\infty} \frac{\left(n \lambda e^{-1 / n}\right)^{t-1}}{(t-1)!} \\
& =\lambda e^{-n \lambda} e^{-1 / n} \sum_{t=0}^{\infty} \frac{\left(n \lambda e^{-1 / n}\right)^{t}}{t!} \\
& =\lambda e^{-n \lambda} e^{-1 / n} \exp \left\{n \lambda e^{-1 / n}\right\} \\
& =\lambda e^{-n \lambda} \exp \left\{n \lambda e^{-1 / n}-1 / n\right\}
\end{aligned}
$$

so that

$$
\begin{aligned}
E_{\theta}\left(\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)\right) & =e^{-n \lambda} \exp \left\{n \lambda e^{-1 / n}\right\}+\lambda e^{-n \lambda} \exp \left\{n \lambda e^{-1 / n}-1 / n\right\} \\
& =e^{-n \lambda} \exp \left\{n \lambda e^{-1 / n}\right\}\left[1+\lambda e^{-1 / n}\right] \\
& =\exp \left\{\lambda\left(n e^{-1 / n}-n\right)\right\}\left[1+\lambda e^{-1 / n}\right]
\end{aligned}
$$

Hence, $\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)$ is not an unbiased estimator of θ. Note that

$$
\lim _{n \rightarrow \infty}\left(n e^{-1 / n}-n\right)=\lim _{n \rightarrow \infty} n\left(e^{-1 / n}-1\right)=\lim _{n \rightarrow \infty} n\left[1-\frac{1}{n}+O\left(\frac{1}{n^{2}}\right)-1\right]=-1
$$

so that $E_{\theta}\left(\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)\right) \rightarrow e^{-\lambda}(1+\lambda)$ implying that $\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)$ is asymptotically an unbiased estimator of θ.
(c) From the central limit theorem, we know that

$$
\frac{\sqrt{n}(\bar{X}-\lambda)}{\sqrt{\lambda}} \rightarrow \mathcal{N}(0,1)
$$

in distribution as $n \rightarrow \infty$. Moreover, $\bar{X} \rightarrow \lambda$ in probability as $n \rightarrow \infty$ since

$$
P_{\lambda}(|\bar{X}-\lambda| \geq \varepsilon) \leq \frac{\operatorname{Var}_{\lambda}(\bar{X})}{\varepsilon^{2}}=\frac{\lambda}{n \varepsilon^{2}}
$$

so that $e^{-\bar{X}}(1+\bar{X}) \rightarrow e^{-\lambda}(1+\lambda)$ in probability as well. If we now let $g(y)=(1+y) e^{-y}$ for $y>0$ so that $g^{\prime}(y)=-y e^{-y}$, then

$$
\frac{\sqrt{n}\left(e^{-\bar{X}}(1+\bar{X})-e^{-\lambda}(1+\lambda)\right)}{\sqrt{\lambda} \cdot \lambda e^{-\lambda}} \rightarrow \mathcal{N}(0,1)
$$

or, equivalently,

$$
\sqrt{n}\left(\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)-\theta\right) \rightarrow \mathcal{N}\left(0, \lambda^{3} e^{-2 \lambda}\right)
$$

in distribution as $n \rightarrow \infty$.
5. The distribution of

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

is normal with mean θ and variance

$$
\frac{\sigma^{2}}{n}+\frac{n(n-1)}{n^{2}} \rho \sigma^{2}=\frac{\sigma^{2}(1-\rho)}{n}+\rho \sigma^{2} .
$$

This means that the asymptotic distribution of

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

is $\mathcal{N}\left(\theta, \rho \sigma^{2}\right)$ with $\rho \sigma>0$. Hence,

$$
\lim _{n \rightarrow \infty} P_{\theta}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\theta\right| \leq \epsilon\right)=\frac{1}{\sigma \sqrt{2 \pi \rho}} \int_{-\epsilon}^{\epsilon} e^{-\frac{y^{2}}{2 \rho \sigma^{2}}} \mathrm{~d} y<1
$$

for all $\epsilon>0$. Since this limit does not equal 1 for all $\epsilon>0$, we conclude that $\left\{\bar{X}_{n}\right\}$ is not a consistent sequence of estimators of θ.
6. Note that $T=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is sufficient and complete for θ. Moreover, if $0 \leq t \leq \theta$, then

$$
P_{\theta}(T \leq t)=\left(\frac{t}{\theta}\right)^{n}
$$

so that

$$
E_{\theta}(T)=\frac{1}{\theta^{n}} \int_{0}^{\theta} t \cdot n t^{n-1} \mathrm{~d} t=\frac{n}{n+1} \theta
$$

which implies that

$$
\frac{n+1}{n} T
$$

is an unbiased estimator of θ. Now observe that $E_{\theta}\left(X_{i}\right)=\theta / 2$ so that $E_{\theta}(\bar{X})=\theta / 2$. Thus, $2 \bar{X}$ is also an unbiased estimator of θ. We know from the Rao-Blackwell theorem (Theorem 7.3.17) that for any unbiased estimator $W\left(X_{1}, \ldots, X_{n}\right)$ of θ, the (unique) minimum variance unbiased estimator of θ is

$$
\phi(T)=E\left(W\left(X_{1}, \ldots, X_{n}\right) \mid T\right)
$$

If we set $W=\frac{n+1}{n} T$, then

$$
\phi(T)=E(W \mid T)=E\left(\left.\frac{n+1}{n} T \right\rvert\, T\right)=\frac{n+1}{n} T .
$$

If we set $W=2 \bar{X}$, then

$$
\phi(T)=E(W \mid T)=E(2 \bar{X} \mid T)=2 E(\bar{X} \mid T)
$$

Thus, equating these two expressions for $\phi(T)$ implies that

$$
2 E(\bar{X} \mid T)=\frac{n+1}{n} T \text { and so } E(\bar{X} \mid T=t)=\frac{n+1}{2 n} t
$$

as required.

