Stat 851 Winter 2008
Assignment \#6
This assignment is due on Monday, March 3, 2008.

1. Consider the probability space (Ω, \mathcal{A}, P) where $\Omega=[0,1], \mathcal{A}=\mathcal{B}([0,1])$ are the Borel sets in $[0,1]$, and P is the uniform probability measure on $[0,1]$. Let $X:[0,1] \rightarrow \mathbb{R}$ be the simple random variable

$$
X(\omega)=2 \cdot \mathbb{1}_{\left[0, \frac{1}{4}\right)}(\omega)+3 \cdot \mathbb{1}_{\left[\frac{1}{4}, \frac{5}{8}\right)}(\omega)+7 \cdot \mathbb{1}_{\left[\frac{5}{8}, \frac{3}{4}\right)}(\omega)+6 \cdot \mathbb{1}_{\left[\frac{3}{4}, 1\right]}(\omega) .
$$

(a) Sketch the graph of ω vs. $X(\omega)$.
(b) Determine F_{X}, the distribution function of X.
(c) Compute the Riemann-Stieltjes integral $\int_{-\infty}^{\infty} x^{2} F_{X}(d x)=\int_{-\infty}^{\infty} x^{2} d F_{X}(x)$.
2. Complete the following exercise from page 63:

- \#9. 19

3. Complete the following exercises from pages 73-74:

- \#10.1, 10.6, 10.13

There are some typos in the answers for 10.6. In particular, the answers for (c) and (d) should be switched, and the answer for (e) needs to be multiplied by 2 .

