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Lecture #10: Continuity of Probability

Recall that last class we proved the following theorem.

Theorem 10.1. Consider the real numbers R with the Borel σ-algebra B, and let P be a
probability on (R,B). The function F : R → [0, 1] defined by F (x) = P {(−∞, x]}, x ∈ R,
characterizes P.

The function F in the statement of the theorem is an example of a distribution function and
will be of fundamental importance when we study random variables later on in the course.

Definition. A function F : R → [0, 1] is called a distribution function if

(i) lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1,

(ii) F is right-continuous, and

(iii) F is increasing.

Before we continue our discussion of distribution functions, we will need a result known as
the continuity of probability theorem. If Aj, j = 1, 2, . . ., is a sequence of events, then we say
that Aj increases to A and write {Aj} ↑ A if A1 ⊆ A2 ⊆ A3 ⊆ · · · and

�∞
j=1 Aj = A. If Bj,

j = 1, 2, . . ., is a sequence of events, then we say that Bj decreases to B and write {Bj} ↓ B

if B1 ⊇ B2 ⊇ B3 ⊇ · · · and
�∞

j=1 Bj = B. Note that Bj decreases to B if and only if Bc
j

increases to B
c.

A1A2A3
∞�

i=1

Ai

Theorem 10.2. If Aj, j = 1, 2, . . ., is a sequence of events increasing to A, then

lim
n→∞

P {An} = P {A} .

Proof. Since Aj ⊆ Aj+1 we see that Aj ∩ Aj+1 = Aj. Therefore, we consider the event
Cj+1 = Aj+1 ∩ A

c
j, namely that part of Aj+1 not in Aj. For notational convenience, take

A0 = ∅ so that C1 = A1. Notice that C1, C2, . . . are disjoint with

n�

j=1

Cj = An and
∞�

j=1

Cj =
∞�

j=1

Aj = A.
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Therefore, using the fact that P is countably additive, we conclude

P {A} = P

� ∞�

j=1

Cj

�
=

∞�

j=1

P {Cj} = lim
n→∞

n�

j=1

P {Cj} = lim
n→∞

P

�
n�

j=1

Cj

�
= lim

n→∞
P {An}

as required.

Exercise 10.3. Show that if Bj, j = 1, 2, . . ., is a sequence of events decreasing to B, then

lim
n→∞

P {Bn} = P {B} .

One important application of the continuity of probability theorem is the following. This
result is usually known as the Borel-Cantelli Lemma. (Actually, it is usually given as the
first part of the Borel-Cantelli Lemma.)

Theorem 10.4. Suppose that Aj, j = 1, 2, . . ., is a sequence of events. If

∞�

j=1

P {Aj} < ∞, (10.3)

then

P

� ∞�

n=1

∞�

m=n

Am

�
= 0.

Proof. For n = 1, 2, . . ., if we define

Bn =
∞�

m=n

Am,

then Bn, n = 1, 2, . . ., is a sequence of decreasing events and so by Exercise 10.3 we find

P

� ∞�

n=1

∞�

m=n

Am

�
= P

� ∞�

n=1

Bn

�
= lim

n→∞
P {Bn} .

Using countable subadditivity, we see that

P {Bn} = P

� ∞�

m=n

Am

�
≤

∞�

m=n

P {Am} .

The hypothesis (10.3) implies that

lim
n→∞

∞�

m=n

P {Am} = 0

and so the proof is complete.
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Remark. The event
∞�

n=1

∞�

m=n

Am

occurs so frequently in probability that it is often known as the event “An infinitely often”
or as the limit supremum of the An. That is,

lim sup
n→∞

An = {An i.o.} =
∞�

n=1

∞�

m=n

Am.

Exercise 10.5. One of our requirements when we defined a probability was that it be count-
ably additive. It would have been equivalent to replace that condition with the requirement
that it be continuous in the sense of the previous theorem. That is, suppose that Ω is a
sample space and F is a σ-algebra of subsets of Ω. Show that if P : F → [0, 1] is a set
function with P {Ω} = 1 and such that

P

�
n�

j=1

Aj

�
=

n�

j=1

P {Aj}

whenever A1, . . . , An ∈ F are disjoint, then the following two statements are equivalent.

(i) If A1, A2, . . . ∈ F are disjoint, then

P

� ∞�

j=1

Aj

�
=

∞�

j=1

P {Aj} .

(ii) If A1, A2, . . . ∈ F and {Aj} ↑ A, then

lim
n→∞

P {An} = P {A} .

(Note that (i) implies (ii) by the continuity of measure theorem. The problem is really to
show that (ii) implies (i).)
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