Lecture \#8: Independence and Conditional Probability

Definition. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. The events $A, B \in \mathcal{F}$ are said to be independent if

$$
\mathbf{P}\{A \cap B\}=\mathbf{P}\{A\} \cdot \mathbf{P}\{B\} .
$$

A collection $\left(A_{i}\right)_{i \in I}$ is an independent collection if every finite subset J of I satisfies

$$
\mathbf{P}\left\{\bigcap_{i \in J} A_{i}\right\}=\prod_{i \in J} \mathbf{P}\left\{A_{i}\right\}
$$

We often say that $\left(A_{i}\right)$ are mutually independent. Let \mathcal{A}_{1} and \mathcal{A}_{2} be two sub- σ-algebras of \mathcal{F}. We say that \mathcal{A}_{1} and \mathcal{A}_{2} are independent if

$$
\mathbf{P}\left\{A_{1} \cap A_{2}\right\}=\mathbf{P}\left\{A_{1}\right\} \cdot \mathbf{P}\left\{A_{2}\right\}
$$

for every $A_{1} \in \mathcal{A}_{1}$ and $A_{2} \in \mathcal{A}_{2}$.
Example 8.1. Let $\Omega=\{1,2,3,4\}$ and let $\mathcal{F}=2^{\Omega}$. Define the probability $\mathbf{P}: \mathcal{F} \rightarrow[0,1]$ by

$$
\mathbf{P}\{A\}=\frac{|A|}{4}, \quad A \in \mathcal{F}
$$

In particular,

$$
\mathbf{P}\{1\}=\mathbf{P}\{2\}=\mathbf{P}\{3\}=\mathbf{P}\{4\}=\frac{1}{4} .
$$

Let $A=\{1,2\}, B=\{1,3\}$, and $C=\{2,3\}$.

- Since

$$
\mathbf{P}\{A \cap B\}=\mathbf{P}\{1\}=\frac{1}{4}=\frac{1}{2} \cdot \frac{1}{2}=\mathbf{P}\{A\} \cdot \mathbf{P}\{B\}
$$

we conclude that A and B are independent.

- Since

$$
\mathbf{P}\{A \cap C\}=\mathbf{P}\{2\}=\frac{1}{4}=\frac{1}{2} \cdot \frac{1}{2}=\mathbf{P}\{A\} \cdot \mathbf{P}\{C\}
$$

we conclude that A and C are independent.

- Since

$$
\mathbf{P}\{B \cap C\}=\mathbf{P}\{3\}=\frac{1}{4}=\frac{1}{2} \cdot \frac{1}{2}=\mathbf{P}\{B\} \cdot \mathbf{P}\{C\}
$$

we conclude that B and C are independent.
However,

$$
\mathbf{P}\{A \cap B \cap C\}=\mathbf{P}\{\emptyset\}=0 \neq \mathbf{P}\{A\} \cdot \mathbf{P}\{B\} \cdot \mathbf{P}\{C\}
$$

so that A, B, C are NOT independent. Thus, we see that the events A, B, C are pairwise independent but not mutually independent.

Notation. We often use independent as synonymous with mutually independent.
Definition. Let A and B be events with $\mathbf{P}\{B\}>0$. The conditional probability of A given B is defined by

$$
\mathbf{P}\{A \mid B\}=\frac{\mathbf{P}\{A \cap B\}}{\mathbf{P}\{B\}} .
$$

Theorem 8.2. Let $\mathbf{P}: \mathcal{F} \rightarrow[0,1]$ be a probability and let $A, B \in \mathcal{F}$ be events. If $\mathbf{P}\{B\}>0$, then A and B are independent if and only if $\mathbf{P}\{A \mid B\}=\mathbf{P}\{A\}$.

Proof. To prove this theorem we must show both implications. Assume first that A and B are independent. Then by definition,

$$
\mathbf{P}\{A \cap B\}=\mathbf{P}\{A\} \cdot \mathbf{P}\{B\}
$$

But also by definition we have

$$
\mathbf{P}\{A \mid B\}=\frac{\mathbf{P}\{A \cap B\}}{\mathbf{P}\{B\}} .
$$

Thus, substituting the first expression into the second gives

$$
\mathbf{P}\{A \mid B\}=\frac{\mathbf{P}\{A\} \cdot \mathbf{P}\{B\}}{\mathbf{P}\{B\}}=\mathbf{P}\{A\}
$$

as required. Conversely, suppose that $\mathbf{P}\{A \mid B\}=\mathbf{P}\{A\}$. By definition,

$$
\mathbf{P}\{A \mid B\}=\frac{\mathbf{P}\{A \cap B\}}{\mathbf{P}\{B\}}
$$

which implies that

$$
\mathbf{P}\{A\}=\frac{\mathbf{P}\{A \cap B\}}{\mathbf{P}\{B\}}
$$

and so $\mathbf{P}\{A \cap B\}=\mathbf{P}\{A\} \cdot \mathbf{P}\{B\}$. Thus, A and B are independent.
Theorem 8.3. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, and suppose that $B \in \mathcal{F}$ is an event with $\mathbf{P}\{B\}>0$. The function $\mathbf{Q}: \mathcal{F} \rightarrow[0,1]$ defined by $\mathbf{Q}\{A\}=\mathbf{P}\{A \mid B\}$ is a probability on (Ω, \mathcal{F}) called the conditional probability measure given B.

Proof. Define the set function $\mathbf{Q}: \mathcal{F} \rightarrow[0,1]$ by setting $\mathbf{Q}\{A\}=\mathbf{P}\{A \mid B\}$. In order to show that \mathbf{Q} is a probability, we must check both conditions in the definition. Since $\Omega \in \mathcal{F}$, we have

$$
\mathbf{Q}\{\Omega\}=\mathbf{P}\{\Omega \mid B\}=\frac{\mathbf{P}\{\Omega \cap B\}}{\mathbf{P}\{B\}}=\frac{\mathbf{P}\{B\}}{\mathbf{P}\{B\}}=1 .
$$

If $A_{1}, A_{2}, \ldots \in \mathcal{F}$ are pairwise disjoint, then

$$
\mathbf{Q}\left\{\bigcup_{i=1}^{\infty} A_{i}\right\}=\mathbf{P}\left\{\bigcup_{i=1}^{\infty} A_{i} \mid B\right\}=\frac{1}{\mathbf{P}\{B\}} \mathbf{P}\left\{\left(\bigcup_{i=1}^{\infty} A_{i}\right) \cap B\right\}=\frac{1}{\mathbf{P}\{B\}} \mathbf{P}\left\{\bigcup_{i=1}^{\infty}\left(A_{i} \cap B\right)\right\} .
$$

However, since the $\left(A_{i}\right)$ are pairwise disjoint, so too are the $\left(A_{i} \cap B\right)$. Thus, by countable additivity of the probability \mathbf{P}, we see

$$
\mathbf{P}\left\{\bigcup_{i=1}^{\infty}\left(A_{i} \cap B\right)\right\}=\sum_{i=1}^{\infty} \mathbf{P}\left\{A_{i} \cap B\right\}=\sum_{i=1}^{\infty} \mathbf{P}\left\{A_{i} \mid B\right\} \mathbf{P}\{B\}
$$

which implies that

$$
\mathbf{Q}\left\{\bigcup_{i=1}^{\infty} A_{i}\right\}=\sum_{i=1}^{\infty} \mathbf{P}\left\{A_{i} \mid B\right\}=\sum_{i=1}^{\infty} \mathbf{Q}\left\{A_{i}\right\}
$$

as required.
Definition. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. A collection of events $\left(E_{n}\right)$ is called a partition of Ω if $\mathbf{P}\left\{E_{n}\right\}>0$ for all n, the events $\left(E_{n}\right)$ are pairwise disjoint, and

$$
\bigcup_{n} E_{n}=\Omega
$$

Theorem 8.4 (Partition Theorem). If $\left(E_{n}\right)$ partition Ω and $A \in \mathcal{F}$, then

$$
\mathbf{P}\{A\}=\sum_{n} \mathbf{P}\left\{A \mid E_{n}\right\} \mathbf{P}\left\{E_{n}\right\}
$$

Proof. Notice that

$$
A=A \cap \Omega=A \cap\left(\bigcup_{n} E_{n}\right)=\bigcup_{n}\left(A \cap E_{n}\right)
$$

since $\left(E_{n}\right)$ partition Ω. Since the $\left(E_{n}\right)$ are disjoint, so too are the $\left(A \cap E_{n}\right)$. Therefore, by countable additivity of the probability \mathbf{P}, we find

$$
\mathbf{P}\{A\}=\mathbf{P}\left\{\bigcup_{n}\left(A \cap E_{n}\right)\right\}=\sum_{n} \mathbf{P}\left\{A \cap E_{n}\right\} .
$$

By the definition of conditional probability, $\mathbf{P}\left\{A \cap E_{n}\right\}=\mathbf{P}\left\{A \mid E_{n}\right\} \mathbf{P}\left\{E_{n}\right\}$ and so

$$
\mathbf{P}\{A\}=\sum_{n} \mathbf{P}\left\{A \mid E_{n}\right\} \mathbf{P}\left\{E_{n}\right\}
$$

as required.
Armed with the partition theorem and the definition of conditional probability, we can now derive Bayes' theorem. Since $A \cap B=B \cap A$ we see that $\mathbf{P}\{A \cap B\}=\mathbf{P}\{B \cap A\}$ and so by the definition of conditional probability

$$
\mathbf{P}\{A \mid B\} \mathbf{P}\{B\}=\mathbf{P}\{B \mid A\} \mathbf{P}\{A\}
$$

Assuming that $\mathbf{P}\{A\}>0$, solving gives

$$
\mathbf{P}\{B \mid A\}=\frac{\mathbf{P}\{A \mid B\} \mathbf{P}\{B\}}{\mathbf{P}\{A\}}
$$

If $\mathbf{P}\{B\} \in(0,1)$, then since $\left(B, B^{c}\right)$ partition Ω, we can use the partition theorem to conclude

$$
\mathbf{P}\{A\}=\mathbf{P}\{A \mid B\} \mathbf{P}\{B\}+\mathbf{P}\left\{A \mid B^{c}\right\} \mathbf{P}\left\{B^{c}\right\}
$$

and so

$$
\mathbf{P}\{B \mid A\}=\frac{\mathbf{P}\{A \mid B\} \mathbf{P}\{B\}}{\mathbf{P}\{A \mid B\} \mathbf{P}\{B\}+\mathbf{P}\left\{A \mid B^{c}\right\} \mathbf{P}\left\{B^{c}\right\}} .
$$

More generally, this reasoning leads to the full version of Bayes' theorem.
Theorem 8.5 (Bayes' Theorem). Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. If $\left(E_{n}\right)$ partition Ω and $A \in \mathcal{F}$ with $\mathbf{P}\{A\}>0$, then

$$
\mathbf{P}\left\{E_{j} \mid A\right\}=\frac{\mathbf{P}\left\{A \mid E_{j}\right\} \mathbf{P}\left\{E_{j}\right\}}{\sum_{n} \mathbf{P}\left\{A \mid E_{n}\right\} \mathbf{P}\left\{E_{n}\right\}}
$$

Proof. As above, we have

$$
\mathbf{P}\left\{E_{j} \mid A\right\}=\frac{\mathbf{P}\left\{A \mid E_{j}\right\} \mathbf{P}\left\{E_{j}\right\}}{\mathbf{P}\{A\}} .
$$

By the partition theorem, we have

$$
\mathbf{P}\{A\}=\sum_{n} \mathbf{P}\left\{A \mid E_{n}\right\} \mathbf{P}\left\{E_{n}\right\}
$$

and so combining these two equations proves the theorem.

