Lecture #8: Independence and Conditional Probability

Definition. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. The events $A, B \in \mathcal{F}$ are said to be independent if

$$\mathbf{P}\left\{A\cap B\right\} = \mathbf{P}\left\{A\right\} \cdot \mathbf{P}\left\{B\right\}.$$

A collection $(A_i)_{i\in I}$ is an independent collection if every finite subset J of I satisfies

$$\mathbf{P}\left\{\bigcap_{i\in J}A_i\right\} = \prod_{i\in J}\mathbf{P}\left\{A_i\right\}.$$

We often say that (A_i) are mutually independent. Let A_1 and A_2 be two sub- σ -algebras of \mathcal{F} . We say that A_1 and A_2 are independent if

$$\mathbf{P}\left\{A_1 \cap A_2\right\} = \mathbf{P}\left\{A_1\right\} \cdot \mathbf{P}\left\{A_2\right\}$$

for every $A_1 \in \mathcal{A}_1$ and $A_2 \in \mathcal{A}_2$.

Example 8.1. Let $\Omega = \{1, 2, 3, 4\}$ and let $\mathcal{F} = 2^{\Omega}$. Define the probability $\mathbf{P} : \mathcal{F} \to [0, 1]$ by

$$\mathbf{P}\left\{A\right\} = \frac{|A|}{4}, \quad A \in \mathcal{F}.$$

In particular,

$$\mathbf{P}\{1\} = \mathbf{P}\{2\} = \mathbf{P}\{3\} = \mathbf{P}\{4\} = \frac{1}{4}.$$

Let $A = \{1, 2\}$, $B = \{1, 3\}$, and $C = \{2, 3\}$.

• Since

$$\mathbf{P}\{A \cap B\} = \mathbf{P}\{1\} = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mathbf{P}\{A\} \cdot \mathbf{P}\{B\}$$

we conclude that A and B are independent.

• Since

$$\mathbf{P}\{A \cap C\} = \mathbf{P}\{2\} = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mathbf{P}\{A\} \cdot \mathbf{P}\{C\}$$

we conclude that A and C are independent.

• Since

$$\mathbf{P}\{B \cap C\} = \mathbf{P}\{3\} = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mathbf{P}\{B\} \cdot \mathbf{P}\{C\}$$

we conclude that B and C are independent.

However,

$$\mathbf{P}\left\{A \cap B \cap C\right\} = \mathbf{P}\left\{\emptyset\right\} = 0 \neq \mathbf{P}\left\{A\right\} \cdot \mathbf{P}\left\{B\right\} \cdot \mathbf{P}\left\{C\right\}$$

so that A, B, C are NOT independent. Thus, we see that the events A, B, C are pairwise independent but not mutually independent.

Notation. We often use *independent* as synonymous with *mutually independent*.

Definition. Let A and B be events with $P\{B\} > 0$. The *conditional probability* of A given B is defined by

 $\mathbf{P}\left\{A|B\right\} = \frac{\mathbf{P}\left\{A \cap B\right\}}{\mathbf{P}\left\{B\right\}}.$

Theorem 8.2. Let $\mathbf{P}: \mathcal{F} \to [0,1]$ be a probability and let $A, B \in \mathcal{F}$ be events. If $\mathbf{P}\{B\} > 0$, then A and B are independent if and only if $\mathbf{P}\{A|B\} = \mathbf{P}\{A\}$.

Proof. To prove this theorem we must show both implications. Assume first that A and B are independent. Then by definition,

$$\mathbf{P}\left\{A\cap B\right\} = \mathbf{P}\left\{A\right\} \cdot \mathbf{P}\left\{B\right\}.$$

But also by definition we have

$$\mathbf{P}\left\{A|B\right\} = \frac{\mathbf{P}\left\{A \cap B\right\}}{\mathbf{P}\left\{B\right\}}.$$

Thus, substituting the first expression into the second gives

$$\mathbf{P}\left\{A|B\right\} = \frac{\mathbf{P}\left\{A\right\} \cdot \mathbf{P}\left\{B\right\}}{\mathbf{P}\left\{B\right\}} = \mathbf{P}\left\{A\right\}$$

as required. Conversely, suppose that $\mathbf{P}\{A|B\} = \mathbf{P}\{A\}$. By definition,

$$\mathbf{P}\left\{A|B\right\} = \frac{\mathbf{P}\left\{A \cap B\right\}}{\mathbf{P}\left\{B\right\}}$$

which implies that

$$\mathbf{P}\left\{A\right\} = \frac{\mathbf{P}\left\{A \cap B\right\}}{\mathbf{P}\left\{B\right\}}$$

and so $\mathbf{P}\{A \cap B\} = \mathbf{P}\{A\} \cdot \mathbf{P}\{B\}$. Thus, A and B are independent.

Theorem 8.3. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, and suppose that $B \in \mathcal{F}$ is an event with $\mathbf{P}\{B\} > 0$. The function $\mathbf{Q} : \mathcal{F} \to [0,1]$ defined by $\mathbf{Q}\{A\} = \mathbf{P}\{A|B\}$ is a probability on (Ω, \mathcal{F}) called the conditional probability measure given B.

Proof. Define the set function $\mathbf{Q}: \mathcal{F} \to [0,1]$ by setting $\mathbf{Q}\{A\} = \mathbf{P}\{A|B\}$. In order to show that \mathbf{Q} is a probability, we must check both conditions in the definition. Since $\Omega \in \mathcal{F}$, we have

$$\mathbf{Q}\left\{\Omega\right\} = \mathbf{P}\left\{\Omega|B\right\} = \frac{\mathbf{P}\left\{\Omega\cap B\right\}}{\mathbf{P}\left\{B\right\}} = \frac{\mathbf{P}\left\{B\right\}}{\mathbf{P}\left\{B\right\}} = 1.$$

If $A_1, A_2, \ldots \in \mathcal{F}$ are pairwise disjoint, then

$$\mathbf{Q}\left\{\bigcup_{i=1}^{\infty}A_i\right\} = \mathbf{P}\left\{\bigcup_{i=1}^{\infty}A_i\middle|B\right\} = \frac{1}{\mathbf{P}\left\{B\right\}}\mathbf{P}\left\{\left(\bigcup_{i=1}^{\infty}A_i\right)\cap B\right\} = \frac{1}{\mathbf{P}\left\{B\right\}}\mathbf{P}\left\{\bigcup_{i=1}^{\infty}(A_i\cap B)\right\}.$$

However, since the (A_i) are pairwise disjoint, so too are the $(A_i \cap B)$. Thus, by countable additivity of the probability \mathbf{P} , we see

$$\mathbf{P}\left\{\bigcup_{i=1}^{\infty}(A_i \cap B)\right\} = \sum_{i=1}^{\infty}\mathbf{P}\left\{A_i \cap B\right\} = \sum_{i=1}^{\infty}\mathbf{P}\left\{A_i | B\right\}\mathbf{P}\left\{B\right\}$$

which implies that

$$\mathbf{Q}\left\{\bigcup_{i=1}^{\infty} A_i\right\} = \sum_{i=1}^{\infty} \mathbf{P}\left\{A_i \middle| B\right\} = \sum_{i=1}^{\infty} \mathbf{Q}\left\{A_i\right\}$$

as required.

Definition. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. A collection of events (E_n) is called a partition of Ω if $\mathbf{P} \{E_n\} > 0$ for all n, the events (E_n) are pairwise disjoint, and

$$\bigcup_{n} E_n = \Omega.$$

Theorem 8.4 (Partition Theorem). If (E_n) partition Ω and $A \in \mathcal{F}$, then

$$\mathbf{P}\left\{A\right\} = \sum_{n} \mathbf{P}\left\{A|E_{n}\right\} \mathbf{P}\left\{E_{n}\right\}.$$

Proof. Notice that

$$A = A \cap \Omega = A \cap \left(\bigcup_{n} E_{n}\right) = \bigcup_{n} (A \cap E_{n})$$

since (E_n) partition Ω . Since the (E_n) are disjoint, so too are the $(A \cap E_n)$. Therefore, by countable additivity of the probability \mathbf{P} , we find

$$\mathbf{P}\left\{A\right\} = \mathbf{P}\left\{\bigcup_{n} (A \cap E_n)\right\} = \sum_{n} \mathbf{P}\left\{A \cap E_n\right\}.$$

By the definition of conditional probability, $\mathbf{P}\{A \cap E_n\} = \mathbf{P}\{A|E_n\}\mathbf{P}\{E_n\}$ and so

$$\mathbf{P}\left\{A\right\} = \sum_{n} \mathbf{P}\left\{A|E_{n}\right\} \mathbf{P}\left\{E_{n}\right\}$$

as required. \Box

Armed with the partition theorem and the definition of conditional probability, we can now derive Bayes' theorem. Since $A \cap B = B \cap A$ we see that $\mathbf{P}\{A \cap B\} = \mathbf{P}\{B \cap A\}$ and so by the definition of conditional probability

$$\mathbf{P}\left\{ A|B\right\} \mathbf{P}\left\{ B\right\} =\mathbf{P}\left\{ B|A\right\} \mathbf{P}\left\{ A\right\} .$$

Assuming that $P\{A\} > 0$, solving gives

$$\mathbf{P}\left\{B|A\right\} = \frac{\mathbf{P}\left\{A|B\right\}\mathbf{P}\left\{B\right\}}{\mathbf{P}\left\{A\right\}}.$$

If $\mathbf{P}\{B\} \in (0,1)$, then since (B,B^c) partition Ω , we can use the partition theorem to conclude

$$P \{A\} = P \{A|B\} P \{B\} + P \{A|B^c\} P \{B^c\}$$

and so

$$\mathbf{P}\left\{B|A\right\} = \frac{\mathbf{P}\left\{A|B\right\}\mathbf{P}\left\{B\right\}}{\mathbf{P}\left\{A|B\right\}\mathbf{P}\left\{B\right\} + \mathbf{P}\left\{A|B^{c}\right\}\mathbf{P}\left\{B^{c}\right\}}.$$

More generally, this reasoning leads to the full version of Bayes' theorem.

Theorem 8.5 (Bayes' Theorem). Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. If (E_n) partition Ω and $A \in \mathcal{F}$ with $\mathbf{P}\{A\} > 0$, then

$$\mathbf{P}\left\{E_{j}|A\right\} = \frac{\mathbf{P}\left\{A|E_{j}\right\}\mathbf{P}\left\{E_{j}\right\}}{\sum_{n}\mathbf{P}\left\{A|E_{n}\right\}\mathbf{P}\left\{E_{n}\right\}}.$$

Proof. As above, we have

$$\mathbf{P}\left\{E_{j}|A\right\} = \frac{\mathbf{P}\left\{A|E_{j}\right\}\mathbf{P}\left\{E_{j}\right\}}{\mathbf{P}\left\{A\right\}}.$$

By the partition theorem, we have

$$\mathbf{P}\left\{A\right\} = \sum_{n} \mathbf{P}\left\{A|E_{n}\right\} \mathbf{P}\left\{E_{n}\right\}$$

and so combining these two equations proves the theorem.