
Statistics 851 (Fall 2013) September 11, 2013
Prof. Michael Kozdron

Lecture #4: There is no uniform probability on ([0, 1], 2[0,1])

Our goal for today is to prove the first of the claims made last lecture, namely that there
does not exist a uniform probability on the sample space [0, 1] with the σ-algebra 2[0,1].
Suppose that P is our candidate for the uniform probability on ([0, 1], 2[0,1]). Motivated by
our experience with elementary probability, it is desirable for such a uniform probability to
satisfy P {[a, b]} = b − a for any interval [a, b] ⊆ [0, 1]. In other words, the probability of
any interval is just its length. In fact, if 0 ≤ a < b ≤ 1, then the uniform probability should
satisfy

P {[a, b]} = P {(a, b)} = P {[a, b)} = P {(a, b]} = b− a.

In particular,
P {a} = 0 for every 0 ≤ a ≤ 1.

Furthermore, the uniform probability should also satisfy countable additivity since this is
one of the axioms for probability. That is, if 0 ≤ a1 < b1 < · · · < an < bn < · · · ≤ 1, then
the uniform probability should also satisfy

P
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For instance, the probability that the outcome is in the interval [0, 1/4] is 1/4, the probability
the outcome is in the interval [1/3, 1/2] is 1/6, and the probability that the outcome is in
either the interval [0, 1/4] or [1/3, 1/2] should be 1/4 + 1/6 = 5/12. That is,

P {[0, 1/4] ∪ [1/3, 1/2]} = P {[0, 1/4]}+P {[1/3, 1/2]} =
1

4
+

1

6
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12
.

If P is to be the uniform probability on [0, 1], then it should also be unaffected by shifting.
In particular, it should only depend on the length of the interval and not the endpoints
themselves. For instance,

P {[0, 1/4]} = P {[1/6, 5/12]} = P {[3/4, 1]} =
1

4
,

or, more generally,

P {[r, 1/4 + r]} =
1

4
for every 0 < r ≤ 3/4.

Note that if 3/4 < r < 1, then [r, 1/4 + r] is no longer a subset of [0, 1]. But if we allow
“wrapping around” then [r, 1/4 + r] might become two disjoint intervals, each a subset of
[0, 1], having total length 1/4. For instance, if r = 15/16, then [r, 1/4 + r] = [15/16, 19/16]
which when “wrapped around” becomes [0, 3/16] ∪ [15/16, 1]. Note that the total length of
[0, 3/16] ∪ [15/16, 1] is 3/16 + 1/16 = 1/4. That is, using finite additivity,

P {[0, 3/16] ∪ [15/16, 1]} =
1

4
= P {[0, 1/4]} .
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We can write this (allowing for “wrapping around”) using the ⊕ symbol so that

[0, 1/4]⊕ r =

�
[r, 1/4 + r], if 0 < r ≤ 3/4,

[0, 1/4 + r − 1] ∪ [r, 1], if 3/4 < r < 1.

Hence, if 0 < r ≤ 3/4, then

P {[0, 1/4]⊕ r} = P {[r, 1/4 + r]} =
1

4
+ r − r =

1

4

while if 3/4 < r < 1, then

P {[0, 1/4]⊕ r} = P {[0, 1/4 + r − 1] ∪ [r, 1]} = P {[0, 1/4 + r − 1]}+P {[r, 1]}

=
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In general, if A ⊆ [0, 1] is any subset of [0, 1], then we can define the shift of A by r for any
0 < r < 1 as

A⊕ r = {a+ r : a ∈ A, a+ r ≤ 1} ∪ {a+ r − 1 : a ∈ A, a+ r > 1}.

A A⊕ r

0 1 0 1

⊕r

And so if P is to be our candidate for the uniform probability, then it is reasonable to assume
that

P {A⊕ r} = P {A}

for any 0 < r < 1.

To prove that no uniform probability exists for every A ∈ 2[0,1] we will derive a contradiction.
Suppose that there exists such a P. Define an equivalence relation on [0, 1] by setting x ∼ y

iff y − x ∈ Q. For instance,
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This equivalence relationship partitions [0, 1] into a disjoint union of equivalence classes
(with two elements of the same class differing by a rational, but elements of different classes
differing by an irrational). Let Q1 = [0, 1] ∩ Q, and note that there are uncountably many
equivalence classes. Formally, we can write this disjoint union as

[0, 1] = Q1 ∪
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Let H be the subset of [0, 1] consisting of precisely one element from each equivalence class.
(This step uses the Axiom of Choice.) For definiteness, assume that 0 �∈ H. Therefore, we
can write (0, 1] as a disjoint, countable union of shifts of H. That is,

(0, 1] =
�

r∈Q1,r �=1

{H ⊕ r}

with {H ⊕ ri} ∩ {H ⊕ rj} = ∅ for all i �= j which implies

P {(0, 1]} = P

�
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P {H} .

In other words,
1 =

�

r∈Q1,r �=1

P {H} .

We have now arrived at our contradiction. Suppose that we wish to assign probability
p = P {H} to the set H. The previous line tells us that p satisfies

1 =
�

r∈Q1,r �=1

p. (4.2)

However, since p is a number between 0 and 1, there are two possibilities: (i) if p = 0, then
�

r∈Q1,r �=1

p =
�

r∈Q1,r �=1

0 = 0,

and (ii) if 0 < p ≤ 1, then �

r∈Q1,r �=1

p = ∞.

In either case, we see that (4.2) cannot be satisfied for any choice of p with 0 ≤ p ≤ 1. The
conclusion that we are forced to make is that we cannot assign a uniform probability to the
set H. That is, H is not an event so P {H} does not exist.

We can summarize our work with the following theorem.

Theorem 4.1. Consider the uncountable sample space [0, 1] with σ-algebra 2[0,1], the power
set of [0, 1]. There does not exist a probability P : 2[0,1] → [0, 1] satisfying both P {[a, b]} =
b− a for all 0 ≤ a ≤ b ≤ 1, and P {A⊕ r} = P {A} for all A ⊆ [0, 1] and 0 < r < 1.
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In other words, it is not possible to define a uniform probabilityP {A} for every set A ⊆ [0, 1].
The fact that there exists a set H ⊆ [0, 1] such that P {H} does not exist means that the
σ-algebra 2[0,1] is simply too big! Instead, as we shall see, the “correct” σ-algebra to use is
B1, the Borel σ-algebra of [0, 1]. Thus, our next goal, which will still take several lectures to
accomplish, is to construct the uniform probability on ([0, 1],B1).
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