Lecture \#4: There is no uniform probability on ([0, 1], $2^{[0,1]}$)

Our goal for today is to prove the first of the claims made last lecture, namely that there does not exist a uniform probability on the sample space $[0,1]$ with the σ-algebra $2^{[0,1]}$. Suppose that \mathbf{P} is our candidate for the uniform probability on $\left([0,1], 2^{[0,1]}\right)$. Motivated by our experience with elementary probability, it is desirable for such a uniform probability to satisfy $\mathbf{P}\{[a, b]\}=b-a$ for any interval $[a, b] \subseteq[0,1]$. In other words, the probability of any interval is just its length. In fact, if $0 \leq a<b \leq 1$, then the uniform probability should satisfy

$$
\mathbf{P}\{[a, b]\}=\mathbf{P}\{(a, b)\}=\mathbf{P}\{[a, b)\}=\mathbf{P}\{(a, b]\}=b-a .
$$

In particular,

$$
\mathbf{P}\{a\}=0 \quad \text { for every } 0 \leq a \leq 1
$$

Furthermore, the uniform probability should also satisfy countable additivity since this is one of the axioms for probability. That is, if $0 \leq a_{1}<b_{1}<\cdots<a_{n}<b_{n}<\cdots \leq 1$, then the uniform probability should also satisfy

$$
\mathbf{P}\left\{\bigcup_{i=1}^{\infty}\left[a_{i}, b_{i}\right]\right\}=\sum_{i=1}^{\infty} \mathbf{P}\left\{\left[a_{i}, b_{i}\right]\right\}=\sum_{i=1}^{\infty}\left(b_{i}-a_{i}\right)
$$

For instance, the probability that the outcome is in the interval $[0,1 / 4]$ is $1 / 4$, the probability the outcome is in the interval $[1 / 3,1 / 2]$ is $1 / 6$, and the probability that the outcome is in either the interval $[0,1 / 4]$ or $[1 / 3,1 / 2]$ should be $1 / 4+1 / 6=5 / 12$. That is,

$$
\mathbf{P}\{[0,1 / 4] \cup[1 / 3,1 / 2]\}=\mathbf{P}\{[0,1 / 4]\}+\mathbf{P}\{[1 / 3,1 / 2]\}=\frac{1}{4}+\frac{1}{6}=\frac{5}{12}
$$

If \mathbf{P} is to be the uniform probability on $[0,1]$, then it should also be unaffected by shifting. In particular, it should only depend on the length of the interval and not the endpoints themselves. For instance,

$$
\mathbf{P}\{[0,1 / 4]\}=\mathbf{P}\{[1 / 6,5 / 12]\}=\mathbf{P}\{[3 / 4,1]\}=\frac{1}{4}
$$

or, more generally,

$$
\mathbf{P}\{[r, 1 / 4+r]\}=\frac{1}{4} \quad \text { for every } 0<r \leq 3 / 4
$$

Note that if $3 / 4<r<1$, then $[r, 1 / 4+r]$ is no longer a subset of $[0,1]$. But if we allow "wrapping around" then $[r, 1 / 4+r]$ might become two disjoint intervals, each a subset of $[0,1]$, having total length $1 / 4$. For instance, if $r=15 / 16$, then $[r, 1 / 4+r]=[15 / 16,19 / 16]$ which when "wrapped around" becomes $[0,3 / 16] \cup[15 / 16,1]$. Note that the total length of $[0,3 / 16] \cup[15 / 16,1]$ is $3 / 16+1 / 16=1 / 4$. That is, using finite additivity,

$$
\mathbf{P}\{[0,3 / 16] \cup[15 / 16,1]\}=\frac{1}{4}=\mathbf{P}\{[0,1 / 4]\}
$$

We can write this (allowing for "wrapping around") using the \oplus symbol so that

$$
[0,1 / 4] \oplus r= \begin{cases}{[r, 1 / 4+r],} & \text { if } 0<r \leq 3 / 4 \\ {[0,1 / 4+r-1] \cup[r, 1],} & \text { if } 3 / 4<r<1\end{cases}
$$

Hence, if $0<r \leq 3 / 4$, then

$$
\mathbf{P}\{[0,1 / 4] \oplus r\}=\mathbf{P}\{[r, 1 / 4+r]\}=\frac{1}{4}+r-r=\frac{1}{4}
$$

while if $3 / 4<r<1$, then

$$
\begin{aligned}
\mathbf{P}\{[0,1 / 4] \oplus r\}=\mathbf{P}\{[0,1 / 4+r-1] \cup[r, 1]\} & =\mathbf{P}\{[0,1 / 4+r-1]\}+\mathbf{P}\{[r, 1]\} \\
& =\left(\frac{1}{4}+r-1\right)+(1-r)=\frac{1}{4} .
\end{aligned}
$$

In general, if $A \subseteq[0,1]$ is any subset of $[0,1]$, then we can define the shift of A by r for any $0<r<1$ as

$$
\begin{gathered}
A \oplus r=\{a+r: a \in A, a+r \leq 1\} \cup\{a+r-1: a \in A, a+r>1\} . \\
\frac{0}{A}=\frac{0}{\oplus r}-1
\end{gathered}
$$

And so if \mathbf{P} is to be our candidate for the uniform probability, then it is reasonable to assume that

$$
\mathbf{P}\{A \oplus r\}=\mathbf{P}\{A\}
$$

for any $0<r<1$.
To prove that no uniform probability exists for every $A \in 2^{[0,1]}$ we will derive a contradiction. Suppose that there exists such a \mathbf{P}. Define an equivalence relation on $[0,1]$ by setting $x \sim y$ iff $y-x \in \mathbb{Q}$. For instance,

$$
\frac{1}{2} \sim \frac{1}{4}, \quad \frac{1}{9} \sim \frac{1}{27}, \quad \frac{1}{9} \sim \frac{1}{4}, \quad \frac{1}{3} \nsim \frac{1}{\pi}, \quad \frac{1}{e} \nsim \frac{1}{\pi}, \quad \frac{1}{\pi}-\frac{1}{4} \sim \frac{1}{\pi}+\frac{1}{2} .
$$

This equivalence relationship partitions $[0,1]$ into a disjoint union of equivalence classes (with two elements of the same class differing by a rational, but elements of different classes differing by an irrational). Let $\mathbb{Q}_{1}=[0,1] \cap \mathbb{Q}$, and note that there are uncountably many equivalence classes. Formally, we can write this disjoint union as

$$
[0,1]=\mathbb{Q}_{1} \cup\left\{\bigcup_{x \in[0,1] \backslash \mathbb{Q}_{1}}\{(\mathbb{Q}+x) \cap[0,1]\}\right\}=\mathbb{Q}_{1} \cup\left\{\bigcup_{x \in[0,1] \backslash \mathbb{Q}_{1}}\left\{\mathbb{Q}_{1} \oplus x\right\}\right\}
$$

Let H be the subset of $[0,1]$ consisting of precisely one element from each equivalence class. (This step uses the Axiom of Choice.) For definiteness, assume that $0 \notin H$. Therefore, we can write $(0,1]$ as a disjoint, countable union of shifts of H. That is,

$$
(0,1]=\bigcup_{r \in \mathbb{Q} 1, r \neq 1}\{H \oplus r\}
$$

with $\left\{H \oplus r_{i}\right\} \cap\left\{H \oplus r_{j}\right\}=\emptyset$ for all $i \neq j$ which implies

$$
\mathbf{P}\{(0,1]\}=\mathbf{P}\left\{\bigcup_{r \in \mathbb{Q}_{1}, r \neq 1}\{H \oplus r\}\right\}=\sum_{r \in \mathbb{Q}_{1}, r \neq 1} \mathbf{P}\{H \oplus r\}=\sum_{r \in \mathbb{Q}_{1}, r \neq 1} \mathbf{P}\{H\}
$$

In other words,

$$
1=\sum_{r \in \mathbb{Q}_{1}, r \neq 1} \mathbf{P}\{H\} .
$$

We have now arrived at our contradiction. Suppose that we wish to assign probability $p=\mathbf{P}\{H\}$ to the set H. The previous line tells us that p satisfies

$$
\begin{equation*}
1=\sum_{r \in \mathbb{Q}_{1}, r \neq 1} p \tag{4.2}
\end{equation*}
$$

However, since p is a number between 0 and 1 , there are two possibilities: (i) if $p=0$, then

$$
\sum_{r \in \mathbb{Q}_{1}, r \neq 1} p=\sum_{r \in \mathbb{Q}_{1}, r \neq 1} 0=0,
$$

and (ii) if $0<p \leq 1$, then

$$
\sum_{r \in \mathbb{Q}_{1}, r \neq 1} p=\infty
$$

In either case, we see that (4.2) cannot be satisfied for any choice of p with $0 \leq p \leq 1$. The conclusion that we are forced to make is that we cannot assign a uniform probability to the set H. That is, H is not an event so $\mathbf{P}\{H\}$ does not exist.
We can summarize our work with the following theorem.
Theorem 4.1. Consider the uncountable sample space $[0,1]$ with σ-algebra $2^{[0,1]}$, the power set of $[0,1]$. There does not exist a probability $\mathbf{P}: 2^{[0,1]} \rightarrow[0,1]$ satisfying both $\mathbf{P}\{[a, b]\}=$ $b-a$ for all $0 \leq a \leq b \leq 1$, and $\mathbf{P}\{A \oplus r\}=\mathbf{P}\{A\}$ for all $A \subseteq[0,1]$ and $0<r<1$.

In other words, it is not possible to define a uniform probability $\mathbf{P}\{A\}$ for every set $A \subseteq[0,1]$. The fact that there exists a set $H \subseteq[0,1]$ such that $\mathbf{P}\{H\}$ does not exist means that the σ-algebra $2^{[0,1]}$ is simply too big! Instead, as we shall see, the "correct" σ-algebra to use is \mathcal{B}_{1}, the Borel σ-algebra of $[0,1]$. Thus, our next goal, which will still take several lectures to accomplish, is to construct the uniform probability on $\left([0,1], \mathcal{B}_{1}\right)$.

