Stat 851: Solutions to Assignment \#3

(7.11) To see that A is a Borel set write A as

$$
\begin{equation*}
A=\left\{x_{0}\right\}=\left\{\left(-\infty, x_{0}\right) \cup\left(x_{0}, \infty\right)\right\}^{c} . \tag{*}
\end{equation*}
$$

Since open intervals are Borel, so too are unions of open intervals, as are complements of unions of open intervals. Using $(*)$ and elementary properties of the Riemann integral, we have

$$
\begin{aligned}
P\left(\left\{x_{0}\right\}\right) & =\int_{(-\infty, \infty)} \mathbb{1}_{\left\{x_{0}\right\}}(x) f(x) d x \\
& =\int_{\left(-\infty, x_{0}\right)} \mathbb{1}_{\left\{x_{0}\right\}}(x) f(x) d x+\int_{\left\{x_{0}\right\}} \mathbb{1}_{\left\{x_{0}\right\}}(x) f(x) d x+\int_{\left(x_{0}, \infty\right)} \mathbb{1}_{\left\{x_{0}\right\}}(x) f(x) d x \\
& =\int_{\left(-\infty, x_{0}\right)} 0 \cdot f(x) d x+\int_{\left\{x_{0}\right\}} 1 \cdot f(x) d x+\int_{\left(x_{0}, \infty\right)} 0 \cdot f(x) d x \\
& =0+\int_{x_{0}}^{x_{0}} 1 \cdot f(x) d x+0 \\
& =0
\end{aligned}
$$

so that A is a null set for P.
(7.12) Suppose that B is countable. Enumerate the elements of B as $B=\left\{x_{1}, x_{2}, \ldots,\right\}$. Thus writing $B=\bigcup_{i=1}^{\infty}\left\{x_{i}\right\}$ expresses B as a disjoint union. Since P is a probability, we know that

$$
P(B)=P\left(\bigcup_{i=1}^{\infty}\left\{x_{i}\right\}\right)=\sum_{i=1}^{\infty} P\left(\left\{x_{i}\right\}\right) .
$$

But as proved in Exercise 7.11, $P\left(\left\{x_{i}\right\}\right)=0$ for each i so that $P(B)=0$ as well.
(7.13) If P and B are as in Exercise 7.12, and $P(A)=1 / 2$, then since $P(A \cup B)=P(A)+P(B)-$ $P(A \cap B)$ we conclude

$$
\begin{aligned}
P(A \cup B)=\int_{-\infty}^{\infty} \mathbb{1}_{A \cup B}(x) f(x) d x & =\int_{-\infty}^{\infty} \mathbb{1}_{A}(x) f(x) d x+\int_{-\infty}^{\infty} \mathbb{1}_{B}(x) f(x) d x-\int_{-\infty}^{\infty} \mathbb{1}_{A \cap B}(x) f(x) d x \\
& =1 / 2+0-\int_{-\infty}^{\infty} \mathbb{1}_{A \cap B}(x) f(x) d x .
\end{aligned}
$$

We know from Exercise 7.12 that B is a null set for P (and that B is actually a Borel set). Since we are told that A is an event, we can conclude that $A \cap B$ is an event as well. Since $A \cap B \subseteq B$, we see that $P(A \cap B) \leq P(B)=0$ so that

$$
\int_{-\infty}^{\infty} \mathbb{1}_{A \cap B}(x) f(x) d x=0,
$$

and therefore $P(A \cup B)=1 / 2$, as required.

An alternative solution is as follows. Since B as given by Exercise 7.12 is a Borel set, and since A is assumed to be an event, we know that $A \cup B$ is also an event. It now follows that $P(A \cup B)=1 / 2$ since $A \subseteq B$ implies

$$
\frac{1}{2}=P(A) \leq P(A \cup B) \leq P(A)+P(B)=\frac{1}{2}+0=\frac{1}{2}
$$

(7.14) Suppose that A_{1}, A_{2}, \ldots is a sequence of null sets. This means that there exist sets C_{1}, C_{2}, \ldots with $A_{i} \subset C_{i}$ and $P\left(C_{i}\right)=0$ for each i. Let

$$
C=\bigcup_{i=1}^{\infty} C_{i}
$$

so that

$$
B=\bigcup_{i=1}^{\infty} A_{i} \subset C
$$

Since

$$
P(C)=P\left(\bigcup_{i=1}^{\infty} C_{i}\right) \leq \sum_{i=1}^{\infty} P\left(C_{i}\right)=0
$$

we conclude that B is a null set for P.
(7.15) Suppose that $E(|X|)=0$. To show that $X=0$ except possibly on a null set means to show that $P(X=0)=1$. We will prove $P(X=0)=1$ by deriving a contradiction. Suppose, to the contrary, that $P(X=0)<1$. Then, there exists some $a>0$ such that $P(|X| \geq a)>0$. However, by Markov's inequality (Corollary 5.1), we have that for every $a>0$,

$$
P(|X| \geq a) \leq \frac{E(|X|)}{a}=0
$$

since $E(|X|)=0$ by assumption. Hence, for every $a>0$, we have $P(|X| \geq a)=0$, and we conclude $P(|X|>0)=0$, or in other words, $P(X=0)=1$.

It is not possible to conclude in general that $X=0$ everywhere. As a simple example, suppose that $\Omega=\{0,1\}$ and let P be the Dirac mass at the point 0 . (See Example 2 on page 42.) It then follows that the random variable $X: \Omega \rightarrow\{0,1\}$ whose law (or distribution) is P has $P(X=0)=1$ and $P(X=1)=0$ so that $E(|X|)=0$, even though $X \neq 0$ everywhere (i.e., $X(\omega) \neq 0$ for some $\omega \in \Omega$).
(7.17) A direct application of Corollary 7.1 gives
(a) $P\left(\left(-\frac{1}{2}, \frac{1}{2}\right)\right)=F\left(\frac{1}{2}-\right)-F\left(-\frac{1}{2}\right)=1 / 4-0=1 / 4$,
(b) $P\left(\left(-\frac{1}{2}, \frac{3}{2}\right)\right)=F\left(\frac{3}{2}-\right)-F\left(-\frac{1}{2}\right)=(1 / 4+1 / 2)-0=3 / 4$,
(c) $P\left(\left(\frac{2}{3}, \frac{5}{2}\right)\right)=F\left(\frac{5}{2}-\right)-F\left(\frac{2}{3}\right)=(1 / 4+1 / 2+1 / 4)-(1 / 4)=3 / 4$,
(d) $P([0,2))=F(2-)-F(0-)=(1 / 4+1 / 2)-0=3 / 4$,
(e) $P((3, \infty))=1-P((-\infty, 3])=1-F(3)=1-(1 / 4+1 / 2+1 / 4)=0$.
(7.18) In order to prove that the function F given by

$$
F(x)=\sum_{i=1}^{\infty} 2^{-i} \mathbb{1}_{\left[\frac{1}{i}, \infty\right)}(x)
$$

is a distribution function of a probability on \mathbb{R} we use Theorem 7.2. Clearly, $F(x)=0$ for all $x \leq 0$, so that

$$
\lim _{x \rightarrow-\infty} F(x)=0
$$

Moreover, for all $x \geq 1$,

$$
F(x)=\sum_{i=1}^{\infty} 2^{-i} \mathbb{1}_{\left[\frac{1}{i}, \infty\right)}(x)=\sum_{i=1}^{\infty} 2^{-i}=1
$$

so that

$$
\lim _{x \rightarrow \infty} F(x)=1
$$

Suppose that $0<x<y$. If $x \geq 1 / i$ for some i, then necessarily $y>1 / i$ since $y>x$. In particular, $\mathbb{1}_{\left[\frac{1}{i}, \infty\right)}(x) \leq \mathbb{1}_{\left[\frac{1}{i}, \infty\right)}(y)$ for all $-\infty<x<y<\infty$ so that F is non-decreasing. We have already shown that $F(x)=0$ for all $x \leq 0$ and that $F(x)=1$ for all $x \geq 1$ so that F is necessarily right continuous on $(-\infty, 0) \cup[1, \infty)$. We must still show that F is right continuous for all $x \in[0,1)$. Notice that F is a step function for $0 \leq x<1$ with jumps at the points $x=1 / i, i=2,3, \ldots$. It is therefore clear that F is continuous on each open interval $\left((i+1)^{-1}, i^{-1}\right)$, for $i=1,2, \ldots$ Suppose that $x=1 / i$ for some $i=1,2, \ldots$. Then, for all y with $1 /(i-1)>y>1 / i$ we have $F(y)=F(1 / i)$ so that

$$
F(x+)=F(1 / i+)=\lim _{y \rightarrow 1 / i+} F(y)=\lim _{y \rightarrow 1 / i+, y>1 /(i-1)} F(1 / i)=F(1 / i) .
$$

It remains to show that F is right continuous at 0 ; that is, we must show

$$
F(0+)=\lim _{y \rightarrow 0+} F(y)=0
$$

To prove (\dagger), we show that for every $\varepsilon>0$ there exists $\delta>0$ such that $F(y)<\varepsilon$ whenever $y<\delta$. Let $\varepsilon>0$ be arbitrary. Then there exists an $i_{0} \in \mathbb{N}$ such that $\varepsilon \geq 2^{-i_{0}}$. Let $\delta=1 / i_{0}$ so that $y<1 / i_{0}$. Thus, by the right-continuity of F,

$$
F(y) \leq F\left(1 / i_{0}\right)=\sum_{i=1}^{\infty} 2^{-i} \mathbb{1}_{\left[\frac{1}{i}, \infty\right)}\left(1 / i_{0}\right)=\sum_{i=i_{0}}^{\infty} 2^{-i}=1-\sum_{i=1}^{i_{0}-1} 2^{-i}=1-\frac{1}{2} \cdot \frac{1-2^{-i_{0}}}{1-1 / 2}=2^{-i_{0}} \leq \varepsilon
$$

Thus, by Theorem $7.2, F$ is the distribution function of a probability on \mathbb{R}.

Finally, a direct application of Corollary 7.1 gives
(a) $P([1, \infty))=1-F(1-)=1-\sum_{i=2}^{\infty} 2^{-i} \mathbb{1}_{\left[\frac{1}{i}, \infty\right)}=1-\sum_{i=2}^{\infty} 2^{-i}=1-1 / 2=1 / 2$,
(b) $P\left(\left[\frac{1}{10}, \infty\right)\right)=1-F\left(\frac{1}{10}-\right)=1-\sum_{i=11}^{\infty} 2^{-i} \mathbb{1}_{\left[\frac{1}{i}, \infty\right)}=\sum_{i=1}^{10} 2^{-i}=\frac{1-2^{-11}}{1-1 / 2}-\frac{1}{2}=1-2^{-10}$,
(c) $P(\{0\})=F(0)-F(0-)=0-0=0$,
(d) $P\left(\left[0, \frac{1}{2}\right)\right)=F\left(\frac{1}{2}-\right)-F(0-)=\sum_{i=3}^{\infty} 2^{-i} \mathbb{1}_{\left[\frac{1}{i}, \infty\right)}-0=1-\sum_{i=1}^{2} 2^{-i}=1-(1 / 2+1 / 4)=1 / 4$,
(e) $P((-\infty, 0))=F(0-)-0=0$,
(f) $P((0, \infty))=1-P((-\infty, 0])=1-F(0)=1-0=1$.

