
Stat 851: Solutions to Assignment #3

(7.11) To see that A is a Borel set write A as

A = {x0} = {(−∞, x0) ∪ (x0,∞)}c . (∗)

Since open intervals are Borel, so too are unions of open intervals, as are complements of unions of
open intervals. Using (∗) and elementary properties of the Riemann integral, we have

P ({x0}) =

∫
(−∞,∞)

1{x0}(x)f(x) dx

=

∫
(−∞,x0)

1{x0}(x)f(x) dx+

∫
{x0}

1{x0}(x)f(x) dx+

∫
(x0,∞)

1{x0}(x)f(x) dx

=

∫
(−∞,x0)

0 · f(x) dx+

∫
{x0}

1 · f(x) dx+

∫
(x0,∞)

0 · f(x) dx

= 0 +

∫ x0

x0

1 · f(x) dx+ 0

= 0

so that A is a null set for P .

(7.12) Suppose that B is countable. Enumerate the elements of B as B = {x1, x2, . . . , }. Thus
writing B =

⋃∞
i=1{xi} expresses B as a disjoint union. Since P is a probability, we know that

P (B) = P

( ∞⋃
i=1

{xi}

)
=
∞∑
i=1

P ({xi}).

But as proved in Exercise 7.11, P ({xi}) = 0 for each i so that P (B) = 0 as well.

(7.13) If P and B are as in Exercise 7.12, and P (A) = 1/2, then since P (A∪B) = P (A) +P (B)−
P (A ∩B) we conclude

P (A ∪B) =

∫ ∞
−∞

1A∪B(x)f(x) dx =

∫ ∞
−∞

1A(x)f(x) dx+

∫ ∞
−∞

1B(x)f(x) dx−
∫ ∞
−∞

1A∩B(x)f(x) dx

= 1/2 + 0−
∫ ∞
−∞

1A∩B(x)f(x) dx.

We know from Exercise 7.12 that B is a null set for P (and that B is actually a Borel set). Since
we are told that A is an event, we can conclude that A ∩B is an event as well. Since A ∩B ⊆ B,
we see that P (A ∩B) ≤ P (B) = 0 so that∫ ∞

−∞
1A∩B(x)f(x) dx = 0,

and therefore P (A ∪B) = 1/2, as required.
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An alternative solution is as follows. Since B as given by Exercise 7.12 is a Borel set, and since A is
assumed to be an event, we know that A∪B is also an event. It now follows that P (A∪B) = 1/2
since A ⊆ B implies

1

2
= P (A) ≤ P (A ∪B) ≤ P (A) + P (B) =

1

2
+ 0 =

1

2
.

(7.14) Suppose that A1, A2, . . . is a sequence of null sets. This means that there exist sets C1, C2, . . .
with Ai ⊂ Ci and P (Ci) = 0 for each i. Let

C =
∞⋃
i=1

Ci

so that

B =
∞⋃
i=1

Ai ⊂ C.

Since

P (C) = P

( ∞⋃
i=1

Ci

)
≤
∞∑
i=1

P (Ci) = 0

we conclude that B is a null set for P .

(7.15) Suppose that E(|X|) = 0. To show that X = 0 except possibly on a null set means to show
that P (X = 0) = 1. We will prove P (X = 0) = 1 by deriving a contradiction. Suppose, to the
contrary, that P (X = 0) < 1. Then, there exists some a > 0 such that P (|X| ≥ a) > 0. However,
by Markov’s inequality (Corollary 5.1), we have that for every a > 0,

P (|X| ≥ a) ≤ E(|X|)
a

= 0

since E(|X|) = 0 by assumption. Hence, for every a > 0, we have P (|X| ≥ a) = 0, and we conclude
P (|X| > 0) = 0, or in other words, P (X = 0) = 1.

It is not possible to conclude in general that X = 0 everywhere. As a simple example, suppose that
Ω = {0, 1} and let P be the Dirac mass at the point 0. (See Example 2 on page 42.) It then follows
that the random variable X : Ω → {0, 1} whose law (or distribution) is P has P (X = 0) = 1 and
P (X = 1) = 0 so that E(|X|) = 0, even though X 6= 0 everywhere (i.e., X(ω) 6= 0 for some ω ∈ Ω).

(7.17) A direct application of Corollary 7.1 gives

(a) P
( (
−1

2 ,
1
2

) )
= F

(
1
2−
)
− F

(
−1

2

)
= 1/4− 0 = 1/4,

(b) P
( (
−1

2 ,
3
2

) )
= F

(
3
2−
)
− F

(
−1

2

)
= (1/4 + 1/2)− 0 = 3/4,

(c) P
( (

2
3 ,

5
2

) )
= F

(
5
2−
)
− F

(
2
3

)
= (1/4 + 1/2 + 1/4)− (1/4) = 3/4,

(d) P ( [0, 2) ) = F (2−)− F (0−) = (1/4 + 1/2)− 0 = 3/4,

(e) P ( (3,∞) ) = 1− P ( (−∞, 3] ) = 1− F (3) = 1− (1/4 + 1/2 + 1/4) = 0.
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(7.18) In order to prove that the function F given by

F (x) =
∞∑
i=1

2−i1[ 1i ,∞)(x)

is a distribution function of a probability on R we use Theorem 7.2. Clearly, F (x) = 0 for all x ≤ 0,
so that

lim
x→−∞

F (x) = 0.

Moreover, for all x ≥ 1,

F (x) =
∞∑
i=1

2−i1[ 1i ,∞)(x) =
∞∑
i=1

2−i = 1

so that
lim
x→∞

F (x) = 1.

Suppose that 0 < x < y. If x ≥ 1/i for some i, then necessarily y > 1/i since y > x. In particular,
1[ 1i ,∞)(x) ≤ 1[ 1i ,∞)(y) for all −∞ < x < y < ∞ so that F is non-decreasing. We have already

shown that F (x) = 0 for all x ≤ 0 and that F (x) = 1 for all x ≥ 1 so that F is necessarily right
continuous on (−∞, 0) ∪ [1,∞). We must still show that F is right continuous for all x ∈ [0, 1).
Notice that F is a step function for 0 ≤ x < 1 with jumps at the points x = 1/i, i = 2, 3, . . .. It is
therefore clear that F is continuous on each open interval ((i+ 1)−1, i−1), for i = 1, 2, . . .. Suppose
that x = 1/i for some i = 1, 2, . . .. Then, for all y with 1/(i− 1) > y > 1/i we have F (y) = F (1/i)
so that

F (x+) = F (1/i+) = lim
y→1/i+

F (y) = lim
y→1/i+, y>1/(i−1)

F (1/i) = F (1/i).

It remains to show that F is right continuous at 0; that is, we must show

F (0+) = lim
y→0+

F (y) = 0. (†)

To prove (†), we show that for every ε > 0 there exists δ > 0 such that F (y) < ε whenever y < δ.
Let ε > 0 be arbitrary. Then there exists an i0 ∈ N such that ε ≥ 2−i0 . Let δ = 1/i0 so that
y < 1/i0. Thus, by the right-continuity of F ,

F (y) ≤ F (1/i0) =
∞∑
i=1

2−i1[ 1i ,∞)(1/i0) =
∞∑

i=i0

2−i = 1−
i0−1∑
i=1

2−i = 1− 1

2
· 1− 2−i0

1− 1/2
= 2−i0 ≤ ε.

Thus, by Theorem 7.2, F is the distribution function of a probability on R.

Finally, a direct application of Corollary 7.1 gives

(a) P ( [1,∞) ) = 1− F (1−) = 1−
∞∑
i=2

2−i1[ 1i ,∞) = 1−
∞∑
i=2

2−i = 1− 1/2 = 1/2,

(b) P

( [
1

10
,∞
) )

= 1− F
(

1

10
−
)

= 1−
∞∑

i=11

2−i1[ 1i ,∞) =
10∑
i=1

2−i =
1− 2−11

1− 1/2
− 1

2
= 1− 2−10,

(c) P ( {0} ) = F (0)− F (0−) = 0− 0 = 0,
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(d) P

( [
0,

1

2

) )
= F

(
1

2
−
)
−F (0−) =

∞∑
i=3

2−i1[ 1i ,∞)−0 = 1−
2∑

i=1

2−i = 1−(1/2+1/4) = 1/4,

(e) P ( (−∞, 0) ) = F (0−)− 0 = 0,

(f) P ( (0,∞) ) = 1− P ( (−∞, 0] ) = 1− F (0) = 1− 0 = 1.
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