Statistics 851: Probability
Fall 2005

Suppose that (Ω, \mathcal{A}, P) is a probability space with $\Omega=\{a, b, c, d, e\}$ and $\mathcal{A}=2^{\Omega}$. Let X and Y be the real-valued random variables defined by

$$
X(\omega)=\left\{\begin{array}{ll}
1, & \text { if } \omega \in\{a, b\}, \\
0, & \text { if } \omega \notin\{a, b\},
\end{array} \quad Y(\omega)= \begin{cases}2, & \text { if } \omega \in\{a, c\} \\
0, & \text { if } \omega \notin\{a, c\}\end{cases}\right.
$$

(a) Give explicitly (by listing all the elements) the σ-algebras $\sigma(X)$ and $\sigma(Y)$ generated by X and Y, respectively.

Suppose that $B \in \mathcal{B}$ so that

$$
X^{-1}(B)= \begin{cases}\Omega, & \text { if } 1 \in B, 0 \in B \\ \{a, b\}, & \text { if } 1 \in B, 0 \notin B \\ \{c, d, e\}, & \text { if } 1 \notin B, 0 \in B \\ \emptyset, & \text { if } 1 \notin B, 0 \notin B\end{cases}
$$

Thus, the σ-algebra generated by X is $\sigma(X)=\{\emptyset, \Omega,\{a, b\},\{c, d, e\}\}$. Similarly,

$$
Y^{-1}(B)= \begin{cases}\Omega, & \text { if } 2 \in B, 0 \in B \\ \{a, c\}, & \text { if } 2 \in B, 0 \notin B \\ \{b, d, e\}, & \text { if } 2 \notin B, 0 \in B \\ \emptyset, & \text { if } 2 \notin B, 0 \notin B\end{cases}
$$

so that $\sigma(Y)=\{\emptyset, \Omega,\{a, c\},\{b, d, e\}\}$.
(b) Find the σ-algebra $\sigma(X, Y)$ generated (jointly) by X and Y.

By definition,

$$
\begin{aligned}
\sigma(X, Y)= & \sigma(\sigma(X), \sigma(Y))=\sigma(\{a\},\{b\},\{c\},\{d, e\}) \\
= & \{\emptyset, \Omega,\{a\},\{b\},\{c\},\{d, e\},\{a, b\},\{a, c\},\{a, d, e\},\{b, c\},\{b, d, e\}\{c, d, e\},\{a, b, c\} \\
& \{a, b, d, e\},\{a, c, d, e\},\{b, c, d, e\}\}
\end{aligned}
$$

(c) If $Z=X+Y$, does $\sigma(Z)=\sigma(X, Y)$?

If $Z=X+Y$ then

$$
Z(\omega)= \begin{cases}3, & \text { if } \omega=a \\ 2, & \text { if } \omega=c \\ 1, & \text { if } \omega=b \\ 0, & \text { if } \omega \in\{d, e\}\end{cases}
$$

so that

$$
\sigma(Z)=\sigma(\{a\},\{b\},\{c\},\{d, e\})=\sigma(X, Y)
$$

For real numbers $\alpha, \beta \geq 0$ with $\alpha+\beta \leq 1 / 2$, let P be the probability measure on \mathcal{A} determined by the relations

$$
P(\{a\})=P(\{b\})=\alpha, \quad P(\{c\})=P(\{d\})=\beta, \quad P(\{e\})=1-2(\alpha+\beta) .
$$

(d) Find all α, β for which $\sigma(X)$ and $\sigma(Y)$ are independent. Simplify!

Recall that $\sigma(X)$ and $\sigma(Y)$ are independent iff $P(A \cap B)=P(A) P(B)$ for every $A \in \sigma(X)$ and $B \in \sigma(Y)$. Notice that if either A or B are either \emptyset or Ω, then $P(A \cap B)=P(A) P(B)$. Thus, in order to show that $\sigma(X)$ and $\sigma(Y)$ are independent, we need to simultaneously satisfy the four equalities.

$$
\begin{gathered}
P(\{a, b\} \cap\{a, c\})=P(\{a, b\}) P(\{a, c\}), \quad P(\{c, d, e\} \cap\{a, c\})=P(\{c, d, e\}) P(\{a, c\}), \\
P(\{a, b\} \cap\{b, d, e\})=P(\{a, b\}) P(\{b, d, e\}), \quad P(\{c, d, e\} \cap\{b, d, e\})=P(\{c, d, e\}) P(\{b, d, e\}) .
\end{gathered}
$$

By the definition of P, we have

$$
P(\{a, b\})=2 \alpha, \quad P(\{c, d, e\})=1-2 \alpha, \quad P(\{a, c\})=\alpha+\beta, \quad P(\{b, d, e\})=1-\alpha-\beta
$$

as well as

$$
\begin{gathered}
P(\{a, b\} \cap\{a, c\})=P(\{a\})=\alpha, \quad P(\{c, d, e\} \cap\{a, c\})=P(\{c\})=\beta, \\
P(\{a, b\} \cap\{b, d, e\})=P(\{b\})=\alpha, \quad P(\{c, d, e\} \cap\{b, d, e\})=P(\{d, e\})=1-2 \alpha-\beta .
\end{gathered}
$$

Hence, our system of equations for α and β becomes

$$
\begin{aligned}
& \alpha=2 \alpha(\alpha+\beta) \\
& \beta=(1-2 \alpha)(\alpha+\beta) \\
& \alpha=2 \alpha(1-\alpha-\beta) \\
& 1-2 \alpha-\beta=(1-2 \alpha)(1-\alpha-\beta)
\end{aligned}
$$

which has solution set

$$
\left\{(\alpha, \beta): 0 \leq \alpha \leq \frac{1}{2}, 0 \leq \beta \leq \frac{1}{2}, \alpha+\beta=\frac{1}{2}\right\} .
$$

(e) Find all α, β for which X and $Z=X+Y$ are independent.

In order for X and Z to be independent, we must have

$$
P(X=i, Z=j)=P(X=i) P(Z=j)
$$

for $i=0,1, j=0,1,2,3$. Notice, however, that

$$
(X, Z)= \begin{cases}(1,3), & \text { if } \omega \in\{a\}, \\ (1,1), & \text { if } \omega \in\{b\}, \\ (0,2), & \text { if } \omega \in\{c\}, \\ (0,0), & \text { if } \omega \in\{d, e\}\end{cases}
$$

These imply that

$$
\begin{gathered}
P(\{a\})=P(\{a, b\}) P(\{a\}), \quad P(\{b\})=P(\{a, b\}) P(\{b\}), \\
P(\{c\})=P(\{c, d, e\}) P(\{c\}), P(\{d, e\})=P(\{c, d, e\} P(\{d, e\})
\end{gathered}
$$

which are simultaneously satisfied by either $(\alpha=1 / 2, \beta=0)$ or $(\alpha=0, \beta=0)$.

