Statistics 851: Probability Fall 2005

Suppose that (Ω, \mathcal{A}, P) is a probability space with $\Omega = \{a, b, c, d, e\}$ and $\mathcal{A} = 2^{\Omega}$. Let X and Y be the real-valued random variables defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in \{a, b\}, \\ 0, & \text{if } \omega \notin \{a, b\}, \end{cases} \quad Y(\omega) = \begin{cases} 2, & \text{if } \omega \in \{a, c\}, \\ 0, & \text{if } \omega \notin \{a, c\}. \end{cases}$$

- (a) Give explicitly (by listing all the elements) the σ -algebras $\sigma(X)$ and $\sigma(Y)$ generated by X and Y, respectively.
- (b) Find the σ -algebra $\sigma(X, Y)$ generated (jointly) by X and Y.
- (c) If Z = X + Y, does $\sigma(Z) = \sigma(X, Y)$?

For real numbers α , $\beta \geq 0$ with $\alpha + \beta \leq 1/2$, let P be the probability measure on \mathcal{A} determined by the relations

$$P(\{a\}) = P(\{b\}) = \alpha, \quad P(\{c\}) = P(\{d\}) = \beta, \quad P(\{e\}) = 1 - 2(\alpha + \beta).$$

- (d) Find all α , β for which $\sigma(X)$ and $\sigma(Y)$ are independent. Simplify!
- (e) Find all α , β for which X and Z = X + Y are independent.