Statistics 851: Probability
Fall 2005

Suppose that (Ω, \mathcal{A}, P) is a probability space with $\Omega=\{a, b, c, d, e\}$ and $\mathcal{A}=2^{\Omega}$. Let X and Y be the real-valued random variables defined by

$$
X(\omega)=\left\{\begin{array}{ll}
1, & \text { if } \omega \in\{a, b\}, \\
0, & \text { if } \omega \notin\{a, b\},
\end{array} \quad Y(\omega)= \begin{cases}2, & \text { if } \omega \in\{a, c\} \\
0, & \text { if } \omega \notin\{a, c\}\end{cases}\right.
$$

(a) Give explicitly (by listing all the elements) the σ-algebras $\sigma(X)$ and $\sigma(Y)$ generated by X and Y, respectively.
(b) Find the σ-algebra $\sigma(X, Y)$ generated (jointly) by X and Y.
(c) If $Z=X+Y$, does $\sigma(Z)=\sigma(X, Y)$?

For real numbers $\alpha, \beta \geq 0$ with $\alpha+\beta \leq 1 / 2$, let P be the probability measure on \mathcal{A} determined by the relations

$$
P(\{a\})=P(\{b\})=\alpha, \quad P(\{c\})=P(\{d\})=\beta, \quad P(\{e\})=1-2(\alpha+\beta)
$$

(d) Find all α, β for which $\sigma(X)$ and $\sigma(Y)$ are independent. Simplify!
(e) Find all α, β for which X and $Z=X+Y$ are independent.

