Solution to Exercise (1.5.6). Suppose that T is geometric with killing rate $1-\lambda$ so that $P\{T=j\}=$ $(1-\lambda) \lambda^{j}$ as in Section 1.3. Therefore, by definition of $G_{\lambda}(x, y)$

$$
G_{\lambda}(x, y)=\sum_{k=0}^{\infty} P^{x}\left\{S_{k}=y, T \geq k\right\}=\sum_{k=0}^{\infty} \sum_{j=k}^{\infty} P^{x}\left\{S_{k}=y, T=j\right\}=\sum_{j=0}^{\infty} \sum_{k=0}^{j} P^{x}\left\{S_{k}=y, T=j\right\}
$$

Since T is assumed to be independent of S, it follows that

$$
\begin{aligned}
\sum_{j=0}^{\infty} \sum_{k=0}^{j} P^{x}\left\{S_{k}=y, T=j\right\} & =\sum_{j=0}^{\infty} \sum_{k=0}^{j} P^{x}\left\{S_{k}=y\right\} P\{T=j\}=\sum_{j=0}^{\infty} P\{T=j\} \sum_{k=0}^{j} P^{x}\left\{S_{k}=y\right\} \\
& =\sum_{j=0}^{\infty} P\{T=j\} G_{j}(x, y)=\sum_{j=0}^{\infty}(1-\lambda) \lambda^{j} G_{j}(x, y)
\end{aligned}
$$

as required.
An alternative proof can be given as follows. Using the definition of $G_{j}(x, y)$, we find

$$
\begin{aligned}
\sum_{j=0}^{\infty}(1-\lambda) \lambda^{j} G_{j}(x, y) & =\sum_{j=0}^{\infty}(1-\lambda) \lambda^{j} \sum_{k=0}^{j} P^{x}\left\{S_{k}=y\right\}=\sum_{j=0}^{\infty} \sum_{k=0}^{j}(1-\lambda) \lambda^{j} P^{x}\left\{S_{k}=y\right\} \\
& =\sum_{k=0}^{\infty} \sum_{j=k}^{\infty}(1-\lambda) \lambda^{j} P^{x}\left\{S_{k}=y\right\}=(1-\lambda) \sum_{k=0}^{\infty} P^{x}\left\{S_{k}=y\right\} \sum_{j=k}^{\infty} \lambda^{j}
\end{aligned}
$$

But

$$
\sum_{j=k}^{\infty} \lambda^{j}=\sum_{j=0}^{\infty} \lambda^{j}-\sum_{j=0}^{k-1} \lambda^{j}=\frac{1}{1-\lambda}-\frac{1-\lambda^{k}}{1-\lambda}=\frac{\lambda^{k}}{1-\lambda}
$$

so that

$$
(1-\lambda) \sum_{k=0}^{\infty} P^{x}\left\{S_{k}=y\right\} \sum_{j=k}^{\infty} \lambda^{j}=(1-\lambda) \sum_{k=0}^{\infty} \frac{\lambda^{k}}{1-\lambda} P^{x}\left\{S_{k}=y\right\}=\sum_{k=0}^{\infty} \lambda^{k} P^{x}\left\{S_{k}=y\right\}=G_{\lambda}(x, y)
$$

as required.

Solution to Exercise (1.5.7). Using the definition of σ_{x} we find

$$
G_{A}(x, x)=E^{x}\left[\sum_{j=0}^{\infty} I\left\{S_{j}=x, \tau>j\right\}\right]=1+E^{x}\left[\sum_{j=\sigma_{x}}^{\infty} I\left\{S_{j}=x, \tau>j\right\}\right]
$$

However, conditioning on the value of σ_{x} gives

$$
E^{x}\left[\sum_{j=\sigma_{x}}^{\infty} I\left\{S_{j}=x, \tau>j\right\}\right]=\sum_{k=1}^{\infty} E^{x}\left[\sum_{j=\sigma_{x}}^{\infty} I\left\{S_{j}=x, \tau>j\right\} \mid \sigma_{x}=k, \tau>k\right] P^{x}\left\{\sigma_{x}=k, \tau>k\right\}
$$

By the strong Markov property (Theorem 1.3.2),

$$
E^{x}\left[\sum_{j=\sigma_{x}}^{\infty} I\left\{S_{j}=x, \tau>j\right\} \mid \sigma_{x}=k, \tau>k\right]=E^{x}\left[\sum_{j=0}^{\infty} I\left\{S_{j}=x, \tau>j\right\}\right]
$$

so that

$$
\begin{aligned}
\sum_{k=1}^{\infty} E^{x}\left[\sum_{j=\sigma_{x}}^{\infty}\right. & \left.I\left\{S_{j}=x, \tau>j\right\} \mid \sigma_{x}=k, \tau>k\right] P^{x}\left\{\sigma_{x}=k, \tau>k\right\} \\
& =\sum_{k=1}^{\infty} E^{x}\left[\sum_{j=0}^{\infty} I\left\{S_{j}=x, \tau>j\right\}\right] P^{x}\left\{\sigma_{x}=k, \tau>k\right\} \\
& =E^{x}\left[\sum_{j=0}^{\infty} I\left\{S_{j}=x, \tau>j\right\}\right] \sum_{k=1}^{\infty} P^{x}\left\{\sigma_{x}=k, \tau>k\right\} \\
& =G_{A}(x, x) P^{x}\left\{\tau>\sigma_{x}\right\} .
\end{aligned}
$$

That is,

$$
G_{A}(x, x)=1+G_{A}(x, x) P^{x}\left\{\tau>\sigma_{x}\right\}
$$

which implies that

$$
G_{A}(x, x)=\frac{1}{1-P^{x}\left\{\tau>\sigma_{x}\right\}}=\left[P^{x}\left\{\tau<\sigma_{x}\right\}\right]^{-1}
$$

noting that by definition $P^{x}\left\{\tau=\sigma_{x}\right\}=0$.

Solution to Exercise (1.5.11). By Theorem 1.4.6, the unique function $f: \bar{A} \rightarrow R$ satisfying (a) and (b) is given by

$$
f(x)=E^{x}\left[F\left(S_{\tau}\right)+\sum_{j=0}^{\tau-1} g\left(S_{j}\right)\right] .
$$

An alternative representation for f can be obtained by noticing that

$$
E^{x}\left[F\left(S_{\tau}\right)\right]=\sum_{y \in \partial A} F(y) H_{\partial A}(x, y) \quad \text { and } \quad E^{x}\left[\sum_{j=0}^{\tau-1} g\left(S_{j}\right)\right]=\sum_{z \in A} g(z) G_{A}(x, z) .
$$

Indeed, the first equality follows since

$$
E^{x}\left[F\left(S_{\tau}\right)\right]=\sum_{y \in \partial A} F(y) P^{x}\left\{S_{\tau}=y\right\}=\sum_{y \in \partial A} F(y) H_{\partial A}(x, y)
$$

and the second follows since

$$
\begin{aligned}
E^{x}\left[\sum_{j=0}^{\tau-1} g\left(S_{j}\right)\right]=E^{x}\left[\sum_{j=0}^{\infty} g\left(S_{j}\right) I\{\tau>j\}\right] & =\sum_{j=0}^{\infty} E^{x}\left[g\left(S_{j}\right) I\{\tau>j\}\right] \\
& =\sum_{j=0}^{\infty} \sum_{z \in A} \sum_{k=0}^{\infty} g(z) I\{k>j\} P^{x}\left\{S_{j}=z, \tau=k\right\} .
\end{aligned}
$$

But,

$$
\begin{aligned}
\sum_{j=0}^{\infty} \sum_{z \in A} \sum_{k=0}^{\infty} g(z) I\{k>j\} P^{x}\left\{S_{j}=z, \tau=k\right\} & =\sum_{z \in A} g(z) \sum_{j=0}^{\infty} \sum_{k=j+1}^{\infty} P^{x}\left\{S_{j}=z, \tau=k\right\} \\
& =\sum_{z \in A} g(z) \sum_{j=0}^{\infty} P^{x}\left\{S_{j}=z, \tau>j\right\} \\
& =\sum_{z \in A} g(z) G_{A}(x, z) .
\end{aligned}
$$

In summary,

$$
f(x)=E^{x}\left[F\left(S_{\tau}\right)+\sum_{j=0}^{\tau-1} g\left(S_{j}\right)\right]=\sum_{y \in \partial A} F(y) H_{\partial A}(x, y)+\sum_{z \in A} g(z) G_{A}(x, z)
$$

as required.

