
Stat 800 Spring 2006
Solutions to Assignment #2

Solution to Exercise (1.3.4). Let a > 0, and suppose that τ = inf{j ≥ 0 : |Sj | ≥ a}. Since the events
{sup1≤j≤n |Sj | ≥ a} and {τ ≤ n} are equal, we will show that P{τ ≤ n} ≤ 2P{|Sn| ≥ a}. Elementary
conditional probability gives

P{|Sn| ≥ a} = P{|Sn| ≥ a|τ ≤ n}P{τ ≤ n}+P{|Sn| ≥ a|τ > n}P{τ > n} = P{|Sn| ≥ a|τ ≤ n}P{τ ≤ n}

where the second equality follows since P{|Sn| ≥ a|τ > n} = 0 by the definition of τ . By symmetry and
the strong Markov property we find

P{|Sn| ≥ a|τ ≤ n} ≥ 1
2

from which we conclude
P{|Sn| ≥ a} ≥ 1

2
P{τ ≤ n}.

In other words,
P{ sup

1≤j≤n
|Sj | ≥ a} = P{τ ≤ n} ≤ 2P{|Sn| ≥ a}

as required.

Solution to Exercise (1.4.2). The proof is virtually identical to the proof of Proposition 1.4.1. Assume
S0 = x. By the Markov property, E(f(Sn+1)|Fn) = f(Sn)+∆f(Sn). If Bn = {τ > n}, then Mn+1 = Mn

on Bc
n and E(Mn+1|Fn) = (f(Sn) + ∆f(Sn))IBn + MnIBc

n
. Since f is superharmonic, it follows that

∆f(Sn) ≤ 0 on Bn which gives

E(Mn+1|Fn) ≤ IBnf(Sn) + IBc
n
Mn = Mn

so that Mn is a supermartingale with respect to Fn.

Solution to Exercise (1.4.3). To begin, it is clear that Mn is Fn-measurable, and that E(|Mn|) ≤
E(|Sn|2)+n < ∞ for each n. Since Sn is a d-dimensional simple random walk, we write Sn = (S1

n, . . . , Sd
n)

(and note that S1
n, . . . , Sd

n are not independent one-dimensional simple random walks on Z). We also
write Xn = (X1

n, . . . , Xd
n) so that

Sn+1 = Sn + Xn+1 = (S1
n + X1

n+1, . . . , S
d
n + Xd

n+1).

(Now, however, note that Si
n and Xi

n+1 are independent for each i = 1, . . . , d.) This gives

|Sn+1|2 =
d∑

j=1

(Sj
n+1)

2 =
d∑

j=1

(Sj
n+Xj

n+1)
2 =

d∑
j=1

(Sj
n)2+(Xj

n+1)
2+2Sj

nXj
n+1 = |Sn|2+|Xn+1|2+2

d∑
j=1

Sj
nXj

n+1

and so

E(|Sn+1|2|Fn) = E(|Sn|2|Fn) + E(|Xn+1|2|Fn) + 2
d∑

j=1

E(Sj
nXj

n+1|Fn).

Since Sn is Fn-measurable, and since Xn+1 is independent of Fn, we use properties of conditional ex-
pectation to conclude that E(|Sn|2|Fn) = |Sn|2 and E(|Xn+1|2|Fn) = E(|Xn+1|2) = 1. Furthermore,
E(Sj

nXj
n+1|Fn) = 0 for each j = 1, . . . , d. Indeed, since Sj

n is Fn-measurable, and Xj
n+1 is independent

of Fn, it follows from properties of conditional expectation that E(Sj
nXj

n+1|Fn) = Sj
nE(Xj

n+1|Fn) =
Sj

nE(Xj
n+1) = 0. Hence,

E(|Sn+1|2|Fn) = |Sn|2 + 1
so that

E(Mn+1|Fn) = E(|Sn+1|2 − (n + 1)|Fn) = |Sn|2 + 1− (n + 1) = |Sn|2 − n = Mn

showing Mn is a martingale with respect to Fn.
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Exercise. The purpose of this exercise is to give the Brownian motion analogue of Lemma 1.5.1. Suppose
that Bt is a standard d-dimensional Brownian motion. Show that for any a > 0, there exists ca < ∞
such that for all t, ρ > 0,

P{|Bt| ≥ aρt1/2} ≤ cae−ρ.

Solution. We begin by writing Bt = (B1
t , . . . , Bd

t ) where B1
t , . . . , Bd

t are independent (standard) one-
dimensional Brownian motions. Therefore,

P{|Bt| ≥ aρt1/2} = P{|Bt|2 ≥ a2ρ2t} = P{(B1
t )2 + · · ·+ (Bd

t )2 ≥ a2ρ2t} ≤ d P{(B1
t )2 ≥ d−1a2ρ2t}

= d P{|B1
t | ≥ d−1/2aρt1/2}.

By symmetry,
P{|B1

t | ≥ d−1/2aρt1/2} = 2P{B1
t ≥ d−1/2aρt1/2}

and by Brownian scaling,
P{B1

t ≥ d−1/2aρt1/2} = P{B1
1 ≥ d−1/2aρ}

since t−1/2B1
t ∼ B1 ∼ N(0, 1). Chebychev’s inequality then yields

P{B1
1 ≥ d−1/2aρ} = P{d1/2a−1B1

1 ≥ ρ} ≤ e−ρE[exp{d1/2a−1B1
1}].

The explicit form of the moment generating function of a N(0, 1) random variable gives

E[exp{d1/2a−1B1
1}] = exp{ d

2a2
}.

Combining everything, we therefore find

P{|Bt| ≥ aρt1/2} = 2dP{d1/2a−1B1
1 ≥ ρ} ≤ exp{ d

2a2
}e−ρ = cae−ρ

as required.
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