Solution to Exercise (1.3.4). Let $a>0$, and suppose that $\tau=\inf \left\{j \geq 0:\left|S_{j}\right| \geq a\right\}$. Since the events $\left\{\sup _{1 \leq j \leq n}\left|S_{j}\right| \geq a\right\}$ and $\{\tau \leq n\}$ are equal, we will show that $P\{\tau \leq n\} \leq 2 P\left\{\left|S_{n}\right| \geq a\right\}$. Elementary conditional probability gives
$P\left\{\left|S_{n}\right| \geq a\right\}=P\left\{\left|S_{n}\right| \geq a \mid \tau \leq n\right\} P\{\tau \leq n\}+P\left\{\left|S_{n}\right| \geq a \mid \tau>n\right\} P\{\tau>n\}=P\left\{\left|S_{n}\right| \geq a \mid \tau \leq n\right\} P\{\tau \leq n\}$ where the second equality follows since $P\left\{\left|S_{n}\right| \geq a \mid \tau>n\right\}=0$ by the definition of τ. By symmetry and the strong Markov property we find

$$
P\left\{\left|S_{n}\right| \geq a \mid \tau \leq n\right\} \geq \frac{1}{2}
$$

from which we conclude

$$
P\left\{\left|S_{n}\right| \geq a\right\} \geq \frac{1}{2} P\{\tau \leq n\}
$$

In other words,

$$
P\left\{\sup _{1 \leq j \leq n}\left|S_{j}\right| \geq a\right\}=P\{\tau \leq n\} \leq 2 P\left\{\left|S_{n}\right| \geq a\right\}
$$

as required.

Solution to Exercise (1.4.2). The proof is virtually identical to the proof of Proposition 1.4.1. Assume $S_{0}=x$. By the Markov property, $E\left(f\left(S_{n+1}\right) \mid \mathcal{F}_{n}\right)=f\left(S_{n}\right)+\Delta f\left(S_{n}\right)$. If $B_{n}=\{\tau>n\}$, then $M_{n+1}=M_{n}$ on B_{n}^{c} and $E\left(M_{n+1} \mid \mathcal{F}_{n}\right)=\left(f\left(S_{n}\right)+\Delta f\left(S_{n}\right)\right) I_{B_{n}}+M_{n} I_{B_{n}^{c}}$. Since f is superharmonic, it follows that $\Delta f\left(S_{n}\right) \leq 0$ on B_{n} which gives

$$
E\left(M_{n+1} \mid \mathcal{F}_{n}\right) \leq I_{B_{n}} f\left(S_{n}\right)+I_{B_{n}^{c}} M_{n}=M_{n}
$$

so that M_{n} is a supermartingale with respect to \mathcal{F}_{n}.

Solution to Exercise (1.4.3). To begin, it is clear that M_{n} is \mathcal{F}_{n}-measurable, and that $E\left(\left|M_{n}\right|\right) \leq$ $E\left(\left|S_{n}\right|^{2}\right)+n<\infty$ for each n. Since S_{n} is a d-dimensional simple random walk, we write $S_{n}=\left(S_{n}^{1}, \ldots, S_{n}^{d}\right)$ (and note that $S_{n}^{1}, \ldots, S_{n}^{d}$ are not independent one-dimensional simple random walks on Z). We also write $X_{n}=\left(X_{n}^{1}, \ldots, X_{n}^{d}\right)$ so that

$$
S_{n+1}=S_{n}+X_{n+1}=\left(S_{n}^{1}+X_{n+1}^{1}, \ldots, S_{n}^{d}+X_{n+1}^{d}\right)
$$

(Now, however, note that S_{n}^{i} and X_{n+1}^{i} are independent for each $i=1, \ldots, d$.) This gives
$\left|S_{n+1}\right|^{2}=\sum_{j=1}^{d}\left(S_{n+1}^{j}\right)^{2}=\sum_{j=1}^{d}\left(S_{n}^{j}+X_{n+1}^{j}\right)^{2}=\sum_{j=1}^{d}\left(S_{n}^{j}\right)^{2}+\left(X_{n+1}^{j}\right)^{2}+2 S_{n}^{j} X_{n+1}^{j}=\left|S_{n}\right|^{2}+\left|X_{n+1}\right|^{2}+2 \sum_{j=1}^{d} S_{n}^{j} X_{n+1}^{j}$
and so

$$
E\left(\left|S_{n+1}\right|^{2} \mid \mathcal{F}_{n}\right)=E\left(\left|S_{n}\right|^{2} \mid \mathcal{F}_{n}\right)+E\left(\left|X_{n+1}\right|^{2} \mid \mathcal{F}_{n}\right)+2 \sum_{j=1}^{d} E\left(S_{n}^{j} X_{n+1}^{j} \mid \mathcal{F}_{n}\right)
$$

Since S_{n} is \mathcal{F}_{n}-measurable, and since X_{n+1} is independent of \mathcal{F}_{n}, we use properties of conditional expectation to conclude that $E\left(\left|S_{n}\right|^{2} \mid \mathcal{F}_{n}\right)=\left|S_{n}\right|^{2}$ and $E\left(\left|X_{n+1}\right|^{2} \mid \mathcal{F}_{n}\right)=E\left(\left|X_{n+1}\right|^{2}\right)=1$. Furthermore, $E\left(S_{n}^{j} X_{n+1}^{j} \mid \mathcal{F}_{n}\right)=0$ for each $j=1, \ldots, d$. Indeed, since S_{n}^{j} is \mathcal{F}_{n}-measurable, and X_{n+1}^{j} is independent of \mathcal{F}_{n}, it follows from properties of conditional expectation that $E\left(S_{n}^{j} X_{n+1}^{j} \mid \mathcal{F}_{n}\right)=S_{n}^{j} E\left(X_{n+1}^{j} \mid \mathcal{F}_{n}\right)=$ $S_{n}^{j} E\left(X_{n+1}^{j}\right)=0$. Hence,

$$
E\left(\left|S_{n+1}\right|^{2} \mid \mathcal{F}_{n}\right)=\left|S_{n}\right|^{2}+1
$$

so that

$$
E\left(M_{n+1} \mid \mathcal{F}_{n}\right)=E\left(\left|S_{n+1}\right|^{2}-(n+1) \mid \mathcal{F}_{n}\right)=\left|S_{n}\right|^{2}+1-(n+1)=\left|S_{n}\right|^{2}-n=M_{n}
$$

showing M_{n} is a martingale with respect to \mathcal{F}_{n}.

Exercise. The purpose of this exercise is to give the Brownian motion analogue of Lemma 1.5.1. Suppose that B_{t} is a standard d-dimensional Brownian motion. Show that for any $a>0$, there exists $c_{a}<\infty$ such that for all $t, \rho>0$,

$$
P\left\{\left|B_{t}\right| \geq a \rho t^{1 / 2}\right\} \leq c_{a} e^{-\rho}
$$

Solution. We begin by writing $B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{d}\right)$ where $B_{t}^{1}, \ldots, B_{t}^{d}$ are independent (standard) onedimensional Brownian motions. Therefore,

$$
\begin{aligned}
P\left\{\left|B_{t}\right| \geq a \rho t^{1 / 2}\right\}=P\left\{\left|B_{t}\right|^{2} \geq a^{2} \rho^{2} t\right\}=P\left\{\left(B_{t}^{1}\right)^{2}+\cdots+\left(B_{t}^{d}\right)^{2} \geq a^{2} \rho^{2} t\right\} & \leq d P\left\{\left(B_{t}^{1}\right)^{2} \geq d^{-1} a^{2} \rho^{2} t\right\} \\
& =d P\left\{\left|B_{t}^{1}\right| \geq d^{-1 / 2} a \rho t^{1 / 2}\right\}
\end{aligned}
$$

By symmetry,

$$
P\left\{\left|B_{t}^{1}\right| \geq d^{-1 / 2} a \rho t^{1 / 2}\right\}=2 P\left\{B_{t}^{1} \geq d^{-1 / 2} a \rho t^{1 / 2}\right\}
$$

and by Brownian scaling,

$$
P\left\{B_{t}^{1} \geq d^{-1 / 2} a \rho t^{1 / 2}\right\}=P\left\{B_{1}^{1} \geq d^{-1 / 2} a \rho\right\}
$$

since $t^{-1 / 2} B_{t}^{1} \sim B_{1} \sim N(0,1)$. Chebychev's inequality then yields

$$
P\left\{B_{1}^{1} \geq d^{-1 / 2} a \rho\right\}=P\left\{d^{1 / 2} a^{-1} B_{1}^{1} \geq \rho\right\} \leq e^{-\rho} E\left[\exp \left\{d^{1 / 2} a^{-1} B_{1}^{1}\right\}\right]
$$

The explicit form of the moment generating function of a $N(0,1)$ random variable gives

$$
E\left[\exp \left\{d^{1 / 2} a^{-1} B_{1}^{1}\right\}\right]=\exp \left\{\frac{d}{2 a^{2}}\right\}
$$

Combining everything, we therefore find

$$
P\left\{\left|B_{t}\right| \geq a \rho t^{1 / 2}\right\}=2 d P\left\{d^{1 / 2} a^{-1} B_{1}^{1} \geq \rho\right\} \leq \exp \left\{\frac{d}{2 a^{2}}\right\} e^{-\rho}=c_{a} e^{-\rho}
$$

as required.

