Stat 800 Spring 2006 Solutions to Assignment #1

Exercise. Derive equation (1.5).

Solution. Using the definitions of $p_{m+n}(x, y)$ and \tilde{S}_n , we find

$$p_{m+n}(x,y) = P^x \{ S_{m+n} = y \} = P^x \{ \tilde{S}_n = y - S_m \}.$$

Conditioning on the value of S_m gives

$$P^{x}\{\tilde{S}_{n} = y - S_{m}\} = \sum_{z \in \mathbb{Z}^{d}} P^{x}\{\tilde{S}_{n} = y - z | S_{m} = z\}P^{x}\{S_{m} = z\}.$$

Since \hat{S}_n is a simple random walk starting at 0 and independent of $\{X_1, \ldots, X_m\}$ (in particular, \hat{S}_n is independent of S_m), we see that

$$P^{x}\{\tilde{S}_{n} = y - z | S_{m} = z\} = P\{\tilde{S}_{n} = y - z\} = p_{n}(y - z).$$

Combining everything gives

$$p_{m+n}(x,y) = \sum_{z \in \mathbb{Z}^d} P\{\tilde{S}_n = y - z\} P^x\{S_m = z\} = \sum_{z \in \mathbb{Z}^d} p_n(y-z)p_m(x,z) = \sum_{z \in \mathbb{Z}^d} p_m(x,z)p_n(z,y)$$

since $p_n(y-z) = p_n(z, y)$ by (1.2).

Exercise. Show that τ is a stopping time with respect to \mathcal{G}_n if and only if $\{\tau \leq n\} \in \mathcal{G}_n$ for every n.

Solution. If τ is a stopping time with respect to \mathcal{G}_n , then by definition $\{\tau = n\} \in \mathcal{G}_n$. Since \mathcal{G}_n is filtration (so that $\mathcal{G}_0 \subset \mathcal{G}_1 \subset \mathcal{G}_2 \subset \cdots$) we find $\{\tau = j\} \in \mathcal{G}_j \subset \mathcal{G}_n$ for all j = 1, 2, ..., n. Therefore, since \mathcal{G}_n is a σ -algebra, we conclude

$$\{\tau \le n\} = \bigcup_{j=1}^n \{\tau = j\} \in \mathcal{G}_n.$$

On the other hand, suppose that $\{\tau \leq n\} \in \mathcal{G}_n$ for every n. Therefore, since \mathcal{G}_{n-1} is a σ -algebra and since $\mathcal{G}_{n-1} \subset \mathcal{G}_n$, it follows that $\{\tau \leq n-1\}^c \in \mathcal{G}_{n-1} \subset \mathcal{G}_n$. We then conclude

$$\{\tau = n\} = \{\tau \le n\} \cap \{\tau \le n - 1\}^c \in \mathcal{G}_n$$

so that τ is a stopping time with respect to \mathcal{G}_n .

Exercise. Show that if τ_1 and τ_2 are both stopping times with respect to \mathcal{G}_n , then so too are $\tau_1 \wedge \tau_2$ and $\tau_1 \vee \tau_2$.

Solution. Using the result of the previous exercise, to show that $\tau_1 \wedge \tau_2$ is a stopping time with respect to \mathcal{G}_n , it suffices to show that $\{\tau_1 \wedge \tau_2 \leq n\} \in \mathcal{G}_n$. Since τ_1 and τ_2 are stopping times, we have $\{\tau_1 > n\} \in \mathcal{G}_n$ and $\{\tau_2 > n\} \in \mathcal{G}_n$ so that $\{\tau_1 \wedge \tau_2 > n\} = \{\tau_1 > n\} \cap \{\tau_2 > n\} \in \mathcal{G}_n$. Therefore, $\{\tau_1 \wedge \tau_2 \leq n\} = \{\tau_1 \wedge \tau_2 > n\}^c \in \mathcal{G}_n$. Similarly, to show that $\tau_1 \vee \tau_2$ is a stopping time with respect to \mathcal{G}_n , it suffices to show that $\{\tau_1 \vee \tau_2 \leq n\} \in \mathcal{G}_n$. Since τ_1 and τ_2 are stopping times, we have $\{\tau_1 \leq n\} \in \mathcal{G}_n$ and $\{\tau_2 \leq n\} \in \mathcal{G}_n$ so that $\{\tau_1 \vee \tau_2 \leq n\} \in \mathcal{G}_n$. Since τ_1 and τ_2 are stopping times, we have $\{\tau_1 \leq n\} \in \mathcal{G}_n$ and $\{\tau_2 \leq n\} \in \mathcal{G}_n$ so that $\{\tau_1 \vee \tau_2 \leq n\} = \{\tau_1 \leq n\} \cap \{\tau_2 \leq n\} \in \mathcal{G}_n$.

Solution to Exercise (1.3.1). Suppose that τ is a stopping time with respect to \mathcal{G}_n . To show that \mathcal{G}_{τ} is a σ -algebra, it suffices to show that the three conditions in the definition of σ -algebra are satisfied, namely (i) $\emptyset \in \mathcal{G}_{\tau}$, (ii) if $A_i \in \mathcal{G}_{\tau}$ for i = 1, 2, ..., then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{G}_{\tau}$, and (iii) if $A \in \mathcal{G}_{\tau}$, then $A^c \in \mathcal{G}_{\tau}$.

- (i) Since \mathcal{G}_n is a σ -algebra for each n, we know $\emptyset \in \mathcal{G}_n$. Therefore, $\emptyset \cap \{\tau \leq n\} = \emptyset \in \mathcal{G}_n$ for each n, so that $\emptyset \in \mathcal{G}_{\tau}$.
- (ii) Suppose that $A_i \in \mathcal{G}_{\tau}$ for i = 1, 2, ..., so that $A_i \cap \{\tau \le n\} \in \mathcal{G}_n$ for each n. Since \mathcal{G}_n is a σ -algebra, $\bigcup_{i=1}^{\infty} \{A_i \cap \{\tau \le n\}\} \in \mathcal{G}_n$. Therefore, $\bigcup_{i=1}^{\infty} \{A_i \cap \{\tau \le n\}\} = \{\bigcup_{i=1}^{\infty} A_i\} \cap \{\tau \le n\} \in \mathcal{G}_n$ for each n so that $\bigcup_{i=1}^{\infty} A_i \in \mathcal{G}_{\tau}$.
- (iii) Notice that $\{\tau \leq n\} \in \mathcal{G}_n$ for each n since τ is a stopping time with respect to \mathcal{G}_n . Since \mathcal{G}_n is a σ -algebra, $\{\tau \leq n\}^c = \{\tau > n\} \in \mathcal{G}_n$. Suppose that $A \in \mathcal{G}_{\tau}$ so that $A \cap \{\tau \leq n\} \in \mathcal{G}_n$ for each n. Consequently, $[A \cap \{\tau \leq n\}] \cup \{\tau > n\} = A \cup \{\tau > n\} \in \mathcal{G}_n$. Again, as \mathcal{G}_n is a σ -algebra, it follows that $[A \cup \{\tau > n\}]^c = A^c \cap \{\tau \leq n\} \in \mathcal{G}_n$, so that $A^c \in \mathcal{G}_{\tau}$.