Exercise. Derive equation (1.5).
Solution. Using the definitions of $p_{m+n}(x, y)$ and \tilde{S}_{n}, we find

$$
p_{m+n}(x, y)=P^{x}\left\{S_{m+n}=y\right\}=P^{x}\left\{\tilde{S}_{n}=y-S_{m}\right\}
$$

Conditioning on the value of S_{m} gives

$$
P^{x}\left\{\tilde{S}_{n}=y-S_{m}\right\}=\sum_{z \in Z^{d}} P^{x}\left\{\tilde{S}_{n}=y-z \mid S_{m}=z\right\} P^{x}\left\{S_{m}=z\right\}
$$

Since \tilde{S}_{n} is a simple random walk starting at 0 and independent of $\left\{X_{1}, \ldots, X_{m}\right\}$ (in particular, \tilde{S}_{n} is independent of S_{m}), we see that

$$
P^{x}\left\{\tilde{S}_{n}=y-z \mid S_{m}=z\right\}=P\left\{\tilde{S}_{n}=y-z\right\}=p_{n}(y-z) .
$$

Combining everything gives

$$
p_{m+n}(x, y)=\sum_{z \in Z^{d}} P\left\{\tilde{S}_{n}=y-z\right\} P^{x}\left\{S_{m}=z\right\}=\sum_{z \in Z^{d}} p_{n}(y-z) p_{m}(x, z)=\sum_{z \in Z^{d}} p_{m}(x, z) p_{n}(z, y)
$$

since $p_{n}(y-z)=p_{n}(z, y)$ by (1.2).

Exercise. Show that τ is a stopping time with respect to \mathcal{G}_{n} if and only if $\{\tau \leq n\} \in \mathcal{G}_{n}$ for every n.
Solution. If τ is a stopping time with respect to \mathcal{G}_{n}, then by definition $\{\tau=n\} \in \mathcal{G}_{n}$. Since \mathcal{G}_{n} is filtration (so that $\mathcal{G}_{0} \subset \mathcal{G}_{1} \subset \mathcal{G}_{2} \subset \cdots$) we find $\{\tau=j\} \in \mathcal{G}_{j} \subset \mathcal{G}_{n}$ for all $j=1,2, \ldots, n$. Therefore, since \mathcal{G}_{n} is a σ-algebra, we conclude

$$
\{\tau \leq n\}=\bigcup_{j=1}^{n}\{\tau=j\} \in \mathcal{G}_{n}
$$

On the other hand, suppose that $\{\tau \leq n\} \in \mathcal{G}_{n}$ for every n. Therefore, since \mathcal{G}_{n-1} is a σ-algebra and since $\mathcal{G}_{n-1} \subset \mathcal{G}_{n}$, it follows that $\{\tau \leq n-1\}^{c} \in \mathcal{G}_{n-1} \subset \mathcal{G}_{n}$. We then conclude

$$
\{\tau=n\}=\{\tau \leq n\} \cap\{\tau \leq n-1\}^{c} \in \mathcal{G}_{n}
$$

so that τ is a stopping time with respect to \mathcal{G}_{n}.

Exercise. Show that if τ_{1} and τ_{2} are both stopping times with respect to \mathcal{G}_{n}, then so too are $\tau_{1} \wedge \tau_{2}$ and $\tau_{1} \vee \tau_{2}$.

Solution. Using the result of the previous exercise, to show that $\tau_{1} \wedge \tau_{2}$ is a stopping time with respect to \mathcal{G}_{n}, it suffices to show that $\left\{\tau_{1} \wedge \tau_{2} \leq n\right\} \in \mathcal{G}_{n}$. Since τ_{1} and τ_{2} are stopping times, we have $\left\{\tau_{1}>n\right\} \in \mathcal{G}_{n}$ and $\left\{\tau_{2}>n\right\} \in \mathcal{G}_{n}$ so that $\left\{\tau_{1} \wedge \tau_{2}>n\right\}=\left\{\tau_{1}>n\right\} \cap\left\{\tau_{2}>n\right\} \in \mathcal{G}_{n}$. Therefore, $\left\{\tau_{1} \wedge \tau_{2} \leq n\right\}=\left\{\tau_{1} \wedge \tau_{2}>n\right\}^{c} \in \mathcal{G}_{n}$. Similarly, to show that $\tau_{1} \vee \tau_{2}$ is a stopping time with respect to \mathcal{G}_{n}, it suffices to show that $\left\{\tau_{1} \vee \tau_{2} \leq n\right\} \in \mathcal{G}_{n}$. Since τ_{1} and τ_{2} are stopping times, we have $\left\{\tau_{1} \leq n\right\} \in \mathcal{G}_{n}$ and $\left\{\tau_{2} \leq n\right\} \in \mathcal{G}_{n}$ so that $\left\{\tau_{1} \vee \tau_{2} \leq n\right\}=\left\{\tau_{1} \leq n\right\} \cap\left\{\tau_{2} \leq n\right\} \in \mathcal{G}_{n}$.

Solution to Exercise (1.3.1). Suppose that τ is a stopping time with respect to \mathcal{G}_{n}. To show that \mathcal{G}_{τ} is a σ-algebra, it suffices to show that the three conditions in the definition of σ-algebra are satisfied, namely (i) $\emptyset \in \mathcal{G}_{\tau}$, (ii) if $A_{i} \in \mathcal{G}_{\tau}$ for $i=1,2, \ldots$, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{G}_{\tau}$, and (iii) if $A \in \mathcal{G}_{\tau}$, then $A^{c} \in \mathcal{G}_{\tau}$.
(i) Since \mathcal{G}_{n} is a σ-algebra for each n, we know $\emptyset \in \mathcal{G}_{n}$. Therefore, $\emptyset \cap\{\tau \leq n\}=\emptyset \in \mathcal{G}_{n}$ for each n, so that $\emptyset \in \mathcal{G}_{\tau}$.
(ii) Suppose that $A_{i} \in \mathcal{G}_{\tau}$ for $i=1,2, \ldots$, so that $A_{i} \cap\{\tau \leq n\} \in \mathcal{G}_{n}$ for each n. Since \mathcal{G}_{n} is a σ-algebra, $\bigcup_{i=1}^{\infty}\left\{A_{i} \cap\{\tau \leq n\}\right\} \in \mathcal{G}_{n}$. Therefore, $\bigcup_{i=1}^{\infty}\left\{A_{i} \cap\{\tau \leq n\}\right\}=\left\{\bigcup_{i=1}^{\infty} A_{i}\right\} \cap\{\tau \leq n\} \in \mathcal{G}_{n}$ for each n so that $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{G}_{\tau}$.
(iii) Notice that $\{\tau \leq n\} \in \mathcal{G}_{n}$ for each n since τ is a stopping time with respect to \mathcal{G}_{n}. Since \mathcal{G}_{n} is a σ-algebra, $\{\tau \leq n\}^{c}=\{\tau>n\} \in \mathcal{G}_{n}$. Suppose that $A \in \mathcal{G}_{\tau}$ so that $A \cap\{\tau \leq n\} \in \mathcal{G}_{n}$ for each n. Consequently, $[A \cap\{\tau \leq n\}] \cup\{\tau>n\}=A \cup\{\tau>n\} \in \mathcal{G}_{n}$. Again, as \mathcal{G}_{n} is a σ-algebra, it follows that $[A \cup\{\tau>n\}]^{c}=A^{c} \cap\{\tau \leq n\} \in \mathcal{G}_{n}$, so that $A^{c} \in \mathcal{G}_{\tau}$.

