Here is a short hint for Problem 2.9, to follow up the hint I gave in class.
In order to solve (c) and find an expression for the three parameters in this model in terms of $\phi, \sigma_{w}^{2}$, and $\sigma_{z}^{2}$, it is (in my opinion) easiest to find two expressions for the ACF of $\left\{U_{t}\right\}$.

From (a), we have $U_{t}=Z_{t}+\left(W_{t}-\phi W_{t-1}\right)$. You must prove that this is the sum of two stationary processes. This gives an expression for $\gamma_{U}$. Hint: $W_{t}-\phi W_{t-1}$ is a MA(1) process (WHY?) and is therefore stationary.

From (b), we have $U_{t}=N_{t}+\theta N_{t-1}$ where $\left\{N_{t}\right\} \sim W N\left(0, \sigma_{n}^{2}\right)$ to use the notation in class. This gives another expression for $\gamma_{U}$.

If you equate these two expressions, you should find that

$$
\sigma_{z}^{2}+\sigma_{w}^{2}\left(1+\phi^{2}\right)=\sigma_{n}^{2}\left(1+\theta^{2}\right)
$$

and

$$
-\sigma_{w}^{2} \phi=\sigma_{n}^{2} \theta
$$

This is the expression you want that relates all the parameters. Theoretically, you could solve this system of equations. HOWEVER, you do not need to, it is too difficult.

