Stat 452 Fall 2011 Assignment #5

This assignment is due at the beginning of class on Monday, December 5, 2011.

1. Let X_1, \ldots, X_n be iid random variables with probability mass function

$$P_{\mu}(X_1 = x) = \frac{e^{-\mu}\mu^x}{x!}, \quad x \in \{0, 1, \ldots\}, \ \mu > 0.$$

Consider the following estimators of $\theta = e^{-\mu}$:

(i) T_{1,n} = e^{-T/n} (the MLE),
(ii) T_{2,n} = ¹/_n ∑ⁿ_{i=1} I(X_i = 0), and
(iii) T_{3,n} = (1 - ¹/_n)^T

where

$$T = \sum_{i=1}^{n} X_i.$$

- (a) Show that $T_{3,n}$ is the minimum variance unbiased estimator of θ .
- (b) For i = 1, 2, is $T_{i,n}$ an unbiased estimator of θ ? If not, is it asymptotically unbiased as $n \to \infty$? Justify your answers.
- (c) For i = 1, 2, 3, find the asymptotic distribution of

$$\sqrt{n}(T_{i,n}-\theta)$$

as $n \to \infty$. *Hint*: For i = 3, first consider the statistic log $T_{3,n}$.