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Lecture #11: Continuity of Probability (continued)

We will now apply the continuity of probability theorem to prove that the function F (x) =
P {(−∞, x]}, x ∈ R, defined last lecture is actually a distribution function.

Theorem 11.1. Consider the real numbers R with the Borel σ-algebra B, and let P be a
probability on (R,B). The function F : R → [0, 1] defined by F (x) = P {(−∞, x]} for x ∈ R
is a distribution function; that is,

(i) lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1,

(ii) F is right-continuous, and

(iii) F is increasing.

Proof. In order to prove that F (x) = P {(−∞, x]} is a distribution function we need to
verify that the three conditions in definition are met. We will begin by showing (ii). Thus,
to show that F is right-continuous, we must show that if xn is a sequence of real numbers
converging to x from the right, i.e., xn ↓ x or xn → x+, then F (xn) converges to F (x), i.e.,

lim
xn→x+

F (xn) = F (x).

However, this follows immediately from the continuity of probability theorem (actually it
follows directly from Exercise 10.3 which follows directly from Theorem 10.2) by noting that
if xn → x+, then

(−∞, x1] ⊇ (−∞, x2] ⊇ · · · ⊇ (−∞, xj] ⊇ (−∞, xj+1] ⊇ · · · ⊇ (−∞, x]

and
∞�

n=1

(−∞, xn] = (−∞, x]

so that

lim
xn→x+

F (xn) = lim
n→∞

P {(−∞, xn]} = P

� ∞�

n=1

(−∞, xn]

�
= P {(−∞, x]} = F (x).

It now follows from (ii) and the fact that P is a probability on (R,B) that

lim
x→−∞

F (x) = P {(−∞,−∞)} = P {∅} = 0

and
lim
x→∞

F (x) = P {(−∞,∞)} = P {R} = 1.

This establishes (i). To show that F is increasing, observe that if x ≤ y, then (−∞, x] ⊆
(−∞, y]. Since P is a probability, this implies that F (x) = P {(−∞, x]} ≤ P {(−∞, y]} =
F (y). This establishes (iii) and taken together the proof is complete.
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A first look at random variables

Consider a chance experiment. We have defined a probability space (Ω,F ,P) consisting of a
sample space Ω of outcomes, a σ-algebra F of events, and an assignment P of probabilities
to events as a model for the experiment. It is often the case that one is not interested in a
particular outcome per se, but rather in a function of the outcome. This is readily apparent
if we consider a bet on a game of chance at a casino. For instance, suppose that a gambler
pays $3 to roll a fair die and then wins $j where j is the side that appears, j = 1, . . . , 6.
Hence, the gambler’s net income is either −$2, −$1, $0, $1, $2, or $3 depending on whether
a 1, 2, 3, 4, 5, or 6 appears. If we let Ω = {1, 2, 3, 4, 5, 6} denote the sample space for this
experiment, and we let X denote the gambler’s net income, then it is clear that X is the
real-valued function on Ω given by

X(1) = −2, X(2) = −1, X(3) = 0, X(4) = 1, X(5) = 2, X(6) = 3.

More succinctly, we might write X : Ω → R defined by X(ω) = ω− 3. The function X is an
example of a random variable. Observe that

P {X = −2} = P {ω ∈ Ω : X(ω) = −2} = P {1} =
1

6
,

and, similarly,

P {X = −1} = P {X = 0} = P {X = 1} = P {X = 2} = P {X = 3} =
1

6
.

Thus, to understand the likelihood of having a certain net winning, it is enough to know the
probabilities of the outcomes associated with that net winning.

This leads to the general notion of a random variable as a real-valued function on Ω. As we
will see shortly, the sort of trouble that we had with constructing the uniform probability
on the uncountable space ([0, 1],B1) is the same sort of trouble that will prevent any real-
valued function on Ω from being a random variable. It will turn out that only a special
type of function, known as a measurable function, will be a random variable. Fortunately,
every reasonable function (including those that one is likely to encounter when applying
probability theory to everyday chance experiments such as casino games) will be measurable.
For a function not to be measurable, it will need to be really weird.

The definition of random variable

Suppose that (Ω,F ,P) is a probability space. As in the example above, we want to compute
probabilities associated with certain values of the random variable; that is, we want to
compute P {X ∈ B} for any Borel set B.

Hence, if we want to be able to compute P {X ∈ B} = P {ω : X(ω) ∈ B} = P {X−1(B)}
for every Borel set B, then it must be the case that X−1(B) is an event (which is to say that
X

−1(B) ∈ F for every B ∈ B).
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Definition. A real-valued functionX : Ω → R is said to be a random variable ifX−1(B) ∈ F

for every Borel set B ∈ B.

Note that when we say let X be a random variable, we really mean let X be a function from
the probability space (Ω,F ,P) to the real numbers endowed with the Borel σ-algebra (R,B)
such that X

−1(B) ∈ F for every B ∈ B. Hence, when we define a random variable, we
should really also state the underlying probability space as the domain space of X. Since
every random variable we will consider is real-valued, our codomain (or target) space will
always be R endowed with the Borel σ-algebra B. If we want to stress the domain space and
codomain space, we will be explicit and write X : (Ω,F ,P) → (R,B).

Example 11.2. Perhaps the simplest example of a random variable is the indicator function
of an event. Let (Ω,F ,P) be a probability space and suppose that A ∈ F is an event. Let
X : Ω → R be given by

X(ω) = 1A(ω) =

�
1, if ω ∈ A,

0, if ω /∈ A.

For B ∈ B, we find

(1A)
−1(B) =






∅, if 0 �∈ B, 1 �∈ B,

A, if 0 �∈ B, 1 ∈ B,

A
c
, if 0 ∈ B, 1 �∈ B,

Ω, if 0 ∈ B, 1 ∈ B.

Thus, since ∅, A, Ac, and Ω belong to F , we see that for any B ∈ B we necessarily have
X

−1(B) = (1A)−1(B) ∈ F proving that X is a random variable.
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