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Prof. Michael Kozdron

Lecture #11: Continuity of Probability (continued)

We will now apply the continuity of probability theorem to prove that the function F(x) =
P {(—o0, 2|}, x € R, defined last lecture is actually a distribution function.

Theorem 11.1. Consider the real numbers R with the Borel o-algebra B, and let P be a
probability on (R, B). The function F: R — [0, 1] defined by F(z) = P {(—o0,z|} forz € R
1s a distribution function; that is,

(1) lim F(x)=0 and lim F(z) =1,

(ii) F is right-continuous, and
(11i) F is increasing.

Proof. In order to prove that F(x) = P {(—o0,z]} is a distribution function we need to
verify that the three conditions in definition are met. We will begin by showing (ii). Thus,
to show that F' is right-continuous, we must show that if x,, is a sequence of real numbers
converging to z from the right, i.e., z, | = or x,, — x+, then F(x,) converges to F(z), i.e.,

lim F(z,) = F(x).

Tn—x+

However, this follows immediately from the continuity of probability theorem (actually it
follows directly from Exercise 10.3 which follows directly from Theorem 10.2) by noting that

if x,, — x+, then
(_007'1'1] 2 (—OO,LEQ] 2 e D (—OO,.T]] 2 (_Ooaijrl] 2 T 2 (—OO,I’]

and .
ﬂ(—oo,:cn] = (—o00, 7]

so that

lim F(z,) = lim P{(—oc0,z,]} =P {ﬂ(—oo,:cn]} =P {(—o0, 2]} = F(z).

Tpn—T+ n—oo

It now follows from (ii) and the fact that P is a probability on (R, B) that
lim F(z) =P{(—00,—00)} =P{0} =0
T—r—00
and
lim F(z) =P {(—o00,00)} =P {R} = 1.
T—r00

This establishes (i). To show that F is increasing, observe that if x < y, then (—oo, ]
(—o0,y]. Since P is a probability, this implies that F(z) = P {(—o0,z]} < P {(—00,y|}
F(y). This establishes (iii) and taken together the proof is complete.
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A first look at random variables

Consider a chance experiment. We have defined a probability space (€2, F, P) consisting of a
sample space €2 of outcomes, a o-algebra F of events, and an assignment P of probabilities
to events as a model for the experiment. It is often the case that one is not interested in a
particular outcome per se, but rather in a function of the outcome. This is readily apparent
if we consider a bet on a game of chance at a casino. For instance, suppose that a gambler
pays $3 to roll a fair die and then wins $; where j is the side that appears, j = 1,...,6.
Hence, the gambler’s net income is either —$2, —$1, $0, $1, $2, or $3 depending on whether
al, 2, 3,4,5, or 6 appears. If we let Q = {1,2,3,4,5,6} denote the sample space for this
experiment, and we let X denote the gambler’s net income, then it is clear that X is the
real-valued function on €2 given by

More succinctly, we might write X :  — R defined by X (w) = w — 3. The function X is an
example of a random variable. Observe that

P{X——2}—P{weQ:X(w)——2}—P{1}—é,

and, similarly,

P{X:—l}:P{X:O}:P{X:1}:P{X:2}:P{X:3}:%.

Thus, to understand the likelihood of having a certain net winning, it is enough to know the
probabilities of the outcomes associated with that net winning.

This leads to the general notion of a random variable as a real-valued function on 2. As we
will see shortly, the sort of trouble that we had with constructing the uniform probability
on the uncountable space ([0, 1], B;) is the same sort of trouble that will prevent any real-
valued function on €2 from being a random variable. It will turn out that only a special
type of function, known as a measurable function, will be a random variable. Fortunately,
every reasonable function (including those that one is likely to encounter when applying
probability theory to everyday chance experiments such as casino games) will be measurable.
For a function not to be measurable, it will need to be really weird.

The definition of random variable

Suppose that (2, F, P) is a probability space. As in the example above, we want to compute
probabilities associated with certain values of the random variable; that is, we want to
compute P {X € B} for any Borel set B.

Hence, if we want to be able to compute P{X € B} = P{w: X(w) € B} = P{X'(B)}
for every Borel set B, then it must be the case that X ~!(B) is an event (which is to say that
X~YB) € F for every B € B).
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Definition. A real-valued function X : Q — R is said to be a random variable if X~ '(B) € F
for every Borel set B € B.

Note that when we say let X be a random variable, we really mean let X be a function from
the probability space (2, F,P) to the real numbers endowed with the Borel o-algebra (R, B)
such that X '(B) € F for every B € B. Hence, when we define a random variable, we
should really also state the underlying probability space as the domain space of X. Since
every random variable we will consider is real-valued, our codomain (or target) space will
always be R endowed with the Borel o-algebra B. If we want to stress the domain space and
codomain space, we will be explicit and write X : (0, F,P) — (R, B).

Example 11.2. Perhaps the simplest example of a random variable is the indicator function
of an event. Let (Q2, F,P) be a probability space and suppose that A € F is an event. Let
X : Q2 — R be given by

1, ifwedA,
0, ifwé¢A.
For B € B, we find

0, if0¢gB,1¢B,
. if0gB, 1€ B,
Ac, if0e B, 1¢ B,
Q, if0eB, 1¢€B.

(1a)7H(B) =

Thus, since @), A, A¢, and Q belong to F, we see that for any B € B we necessarily have
X~YB) = (14)"'(B) € F proving that X is a random variable.
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