Lecture \#11: Continuity of Probability (continued)

We will now apply the continuity of probability theorem to prove that the function $F(x)=$ $\mathbf{P}\{(-\infty, x]\}, x \in \mathbb{R}$, defined last lecture is actually a distribution function.

Theorem 11.1. Consider the real numbers \mathbb{R} with the Borel σ-algebra \mathcal{B}, and let \mathbf{P} be a probability on $(\mathbb{R}, \mathcal{B})$. The function $F: \mathbb{R} \rightarrow[0,1]$ defined by $F(x)=\mathbf{P}\{(-\infty, x]\}$ for $x \in \mathbb{R}$ is a distribution function; that is,
(i) $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$,
(ii) F is right-continuous, and
(iii) F is increasing.

Proof. In order to prove that $F(x)=\mathbf{P}\{(-\infty, x]\}$ is a distribution function we need to verify that the three conditions in definition are met. We will begin by showing (ii). Thus, to show that F is right-continuous, we must show that if x_{n} is a sequence of real numbers converging to x from the right, i.e., $x_{n} \downarrow x$ or $x_{n} \rightarrow x+$, then $F\left(x_{n}\right)$ converges to $F(x)$, i.e.,

$$
\lim _{x_{n} \rightarrow x+} F\left(x_{n}\right)=F(x)
$$

However, this follows immediately from the continuity of probability theorem (actually it follows directly from Exercise 10.3 which follows directly from Theorem 10.2) by noting that if $x_{n} \rightarrow x+$, then

$$
\left(-\infty, x_{1}\right] \supseteq\left(-\infty, x_{2}\right] \supseteq \cdots \supseteq\left(-\infty, x_{j}\right] \supseteq\left(-\infty, x_{j+1}\right] \supseteq \cdots \supseteq(-\infty, x]
$$

and

$$
\bigcap_{n=1}^{\infty}\left(-\infty, x_{n}\right]=(-\infty, x]
$$

so that

$$
\lim _{x_{n} \rightarrow x+} F\left(x_{n}\right)=\lim _{n \rightarrow \infty} \mathbf{P}\left\{\left(-\infty, x_{n}\right]\right\}=\mathbf{P}\left\{\bigcap_{n=1}^{\infty}\left(-\infty, x_{n}\right]\right\}=\mathbf{P}\{(-\infty, x]\}=F(x)
$$

It now follows from (ii) and the fact that \mathbf{P} is a probability on $(\mathbb{R}, \mathcal{B})$ that

$$
\lim _{x \rightarrow-\infty} F(x)=\mathbf{P}\{(-\infty,-\infty)\}=\mathbf{P}\{\emptyset\}=0
$$

and

$$
\lim _{x \rightarrow \infty} F(x)=\mathbf{P}\{(-\infty, \infty)\}=\mathbf{P}\{\mathbb{R}\}=1
$$

This establishes (i). To show that F is increasing, observe that if $x \leq y$, then $(-\infty, x] \subseteq$ $(-\infty, y]$. Since \mathbf{P} is a probability, this implies that $F(x)=\mathbf{P}\{(-\infty, x]\} \leq \mathbf{P}\{(-\infty, y]\}=$ $F(y)$. This establishes (iii) and taken together the proof is complete.

A first look at random variables

Consider a chance experiment. We have defined a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ consisting of a sample space Ω of outcomes, a σ-algebra \mathcal{F} of events, and an assignment \mathbf{P} of probabilities to events as a model for the experiment. It is often the case that one is not interested in a particular outcome per se, but rather in a function of the outcome. This is readily apparent if we consider a bet on a game of chance at a casino. For instance, suppose that a gambler pays $\$ 3$ to roll a fair die and then wins $\$ j$ where j is the side that appears, $j=1, \ldots, 6$. Hence, the gambler's net income is either $-\$ 2,-\$ 1, \$ 0, \$ 1, \$ 2$, or $\$ 3$ depending on whether a $1,2,3,4,5$, or 6 appears. If we let $\Omega=\{1,2,3,4,5,6\}$ denote the sample space for this experiment, and we let X denote the gambler's net income, then it is clear that X is the real-valued function on Ω given by

$$
X(1)=-2, \quad X(2)=-1, \quad X(3)=0, \quad X(4)=1, \quad X(5)=2, \quad X(6)=3 .
$$

More succinctly, we might write $X: \Omega \rightarrow \mathbb{R}$ defined by $X(\omega)=\omega-3$. The function X is an example of a random variable. Observe that

$$
\mathbf{P}\{X=-2\}=\mathbf{P}\{\omega \in \Omega: X(\omega)=-2\}=\mathbf{P}\{1\}=\frac{1}{6},
$$

and, similarly,

$$
\mathbf{P}\{X=-1\}=\mathbf{P}\{X=0\}=\mathbf{P}\{X=1\}=\mathbf{P}\{X=2\}=\mathbf{P}\{X=3\}=\frac{1}{6} .
$$

Thus, to understand the likelihood of having a certain net winning, it is enough to know the probabilities of the outcomes associated with that net winning.
This leads to the general notion of a random variable as a real-valued function on Ω. As we will see shortly, the sort of trouble that we had with constructing the uniform probability on the uncountable space $\left([0,1], \mathcal{B}_{1}\right)$ is the same sort of trouble that will prevent any realvalued function on Ω from being a random variable. It will turn out that only a special type of function, known as a measurable function, will be a random variable. Fortunately, every reasonable function (including those that one is likely to encounter when applying probability theory to everyday chance experiments such as casino games) will be measurable. For a function not to be measurable, it will need to be really weird.

The definition of random variable

Suppose that $(\Omega, \mathcal{F}, \mathbf{P})$ is a probability space. As in the example above, we want to compute probabilities associated with certain values of the random variable; that is, we want to compute $\mathbf{P}\{X \in B\}$ for any Borel set B.
Hence, if we want to be able to compute $\mathbf{P}\{X \in B\}=\mathbf{P}\{\omega: X(\omega) \in B\}=\mathbf{P}\left\{X^{-1}(B)\right\}$ for every Borel set B, then it must be the case that $X^{-1}(B)$ is an event (which is to say that $X^{-1}(B) \in \mathcal{F}$ for every $\left.B \in \mathcal{B}\right)$.

Definition. A real-valued function $X: \Omega \rightarrow \mathbb{R}$ is said to be a random variable if $X^{-1}(B) \in \mathcal{F}$ for every Borel set $B \in \mathcal{B}$.

Note that when we say let X be a random variable, we really mean let X be a function from the probability space $(\Omega, \mathcal{F}, \mathbf{P})$ to the real numbers endowed with the Borel σ-algebra $(\mathbb{R}, \mathcal{B})$ such that $X^{-1}(B) \in \mathcal{F}$ for every $B \in \mathcal{B}$. Hence, when we define a random variable, we should really also state the underlying probability space as the domain space of X. Since every random variable we will consider is real-valued, our codomain (or target) space will always be \mathbb{R} endowed with the Borel σ-algebra \mathcal{B}. If we want to stress the domain space and codomain space, we will be explicit and write $X:(\Omega, \mathcal{F}, \mathbf{P}) \rightarrow(\mathbb{R}, \mathcal{B})$.

Example 11.2. Perhaps the simplest example of a random variable is the indicator function of an event. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space and suppose that $A \in \mathcal{F}$ is an event. Let $X: \Omega \rightarrow \mathbb{R}$ be given by

$$
X(\omega)=1_{A}(\omega)= \begin{cases}1, & \text { if } \omega \in A \\ 0, & \text { if } \omega \notin A .\end{cases}
$$

For $B \in \mathcal{B}$, we find

$$
\left(1_{A}\right)^{-1}(B)= \begin{cases}\emptyset, & \text { if } 0 \notin B, 1 \notin B, \\ A, & \text { if } 0 \notin B, 1 \in B, \\ A^{c}, & \text { if } 0 \in B, 1 \notin B \\ \Omega, & \text { if } 0 \in B, 1 \in B\end{cases}
$$

Thus, since \emptyset, A, A^{c}, and Ω belong to \mathcal{F}, we see that for any $B \in \mathcal{B}$ we necessarily have $X^{-1}(B)=\left(1_{A}\right)^{-1}(B) \in \mathcal{F}$ proving that X is a random variable.

