Statistics 451 (Fall 2013) Prof. Michael Kozdron

Lecture #9: Construction of a Probability (Part II)

Recall that we have been trying to construct a uniform probability on [0, 1]. As we saw in Lecture #4, it is not possible to construct a uniform probability for every subset of [0, 1]. This meant that $2^{[0,1]}$ was too big a σ -algebra to use. We then discussed the Borel sets and indicated that the Borel σ -algebra is the "right" one to use. Today we will formalize that discussion.

Also recall from Lecture #6 that we had the following corollary to the monotone class theorem.

Corollary 9.1. Let \mathcal{F} be a σ -algebra, and let \mathbf{P} , \mathbf{Q} be two probabilities on (Ω, \mathcal{F}) . Suppose that \mathbf{P} , \mathbf{Q} agree on a class $\mathcal{C} \subseteq \mathcal{F}$ which is closed under finite intersections. If $\sigma(\mathcal{C}) = \mathcal{F}$, then $\mathbf{P} = \mathbf{Q}$.

In particular, note that if \mathcal{F}_0 is an algebra, then \mathcal{F}_0 is necessarily closed under finite intersections.

Theorem 9.2. Consider the real numbers \mathbb{R} with the Borel σ -algebra \mathcal{B} , and let \mathbf{P} be a probability on $(\mathbb{R}, \mathcal{B})$. The function $F : \mathbb{R} \to [0, 1]$ defined by $F(x) = \mathbf{P}\{(-\infty, x]\}, x \in \mathbb{R},$ characterizes \mathbf{P} .

Proof. Let \mathcal{B}_0 denote the set of finite disjoint unions of intervals of the form (x, y] for $-\infty \le x \le y \le \infty$ following the convention that $(x, \infty] = (x, \infty)$. It is easily checked that \mathcal{B}_0 is an algebra.

As we will now show, $\sigma(\mathcal{B}_0) = \mathcal{B}$. To begin, observe that

$$(a,b) = \bigcup_{n=N}^{\infty} \left(a, b - \frac{1}{n}\right]$$

for some sufficiently large N. This implies that $\mathcal{B} \subseteq \sigma(\mathcal{B}_0)$. Moreover,

$$(a,b] = \bigcap_{n=1}^{\infty} \left(a,b+\frac{1}{n}\right)$$

so that $\mathcal{B}_0 \subseteq \mathcal{B}$ and therefore $\sigma(\mathcal{B}_0) \subseteq \mathcal{B}$. Taken together, we have $\sigma(\mathcal{B}_0) = \mathcal{B}$. We now observe that

$$\mathbf{P}\{(x,y]\} = \mathbf{P}\{(-\infty,y] \setminus (-\infty,x]\} = \mathbf{P}\{(-\infty,y]\} - \mathbf{P}\{(-\infty,x]\} = F(y) - F(x)$$

and so if $A \in \mathcal{B}_0$ is of the form

$$A = \bigcup_{i=1}^{n} (x_i, y_i]$$

with $y_i < x_{i+1}$, then

$$\mathbf{P}\{A\} = \sum_{i=1}^{n} [F(y_i) - F(x_i)]$$

Suppose that \mathbf{Q} is another probability on (Ω, \mathcal{F}) satisfying $F(x) = \mathbf{Q} \{(-\infty, x]\}$. Repeating the argument just given shows that $\mathbf{Q} \{A\} = \mathbf{P} \{A\}$ for every $A \in \mathcal{B}_0$. Since \mathcal{B}_0 is an algebra and $\mathbf{Q} = \mathbf{P}$ on \mathcal{B}_0 , we conclude from the corollary to the monotone class theorem that $\mathbf{Q} = \mathbf{P}$ on \mathcal{B} .

Definition. Let **P** be a probability on \mathcal{F} . A null set (or a negligible set) for **P** is a subset $A \subseteq \Omega$ such that there exists a $B \in \mathcal{F}$ with $A \subseteq B$ and $\mathbf{P} \{B\} = 0$.

Note. Suppose that $B \in \mathcal{F}$ with $\mathbf{P} \{B\} = 0$. Let $A \subseteq B$ as shown below.

If $A \in \mathcal{F}$, then we can conclude that $\mathbf{P} \{A\} = 0$. However, if $A \notin \mathcal{F}$, then $\mathbf{P} \{A\}$ does not make sense.

In either case, A is a null set. Thus, it is natural to define $\mathbf{P}\{A\} = 0$ for all null sets.

Theorem 9.3. Suppose that $(\Omega, \mathcal{F}, \mathbf{P})$ is a probability space so that \mathbf{P} is a probability on the σ -algebra \mathcal{F} . Let \mathcal{N} denote the set of all null sets for \mathbf{P} . If

$$\mathcal{F}' = \mathcal{F} \cup \mathcal{N} = \{ A \cup N : A \in \mathcal{F}, N \in \mathcal{N} \},\$$

then \mathcal{F}' is a σ -algebra, called the **P**-completion of \mathcal{F} , and is the smallest σ -algebra containing \mathcal{F} and \mathcal{N} . Furthermore, **P** extends uniquely to a probability on \mathcal{F}' (denoted by **P**') by setting

$$\mathbf{P}'\{A \cup N\} = \mathbf{P}\{A\}$$

for $A \in \mathcal{F}$, $N \in \mathcal{N}$.

Proof. To show that \mathcal{F}' is a σ -algebra, we need to verify that the three conditions in the definition of σ -algebra are met. To that end, we will first show that $\Omega \in \mathcal{F}'$. Since $\emptyset \in \mathcal{F}$ has $\mathbf{P} \{\emptyset\} = 0$ and $\emptyset \subseteq \emptyset$, we conclude that $\emptyset \in \mathcal{N}$ is a null set. If we now write $\Omega = \Omega \cup \emptyset$ then we have expressed Ω as a union of an event in \mathcal{F} (namely Ω) and a null set (namely \emptyset). This shows $\Omega \in \mathcal{F}'$. We will now show that \mathcal{F}' is closed under complements. That is, suppose $E \in \mathcal{F}'$ so that $E = A \cup N$ for some event $A \in \mathcal{F}$ and some null set $N \in \mathcal{N}$. Since N is a null set, we know there exists some event $B \in \mathcal{F}$ with $\mathbf{P} \{B\} = 0$. We now observe that $N^c = B^c \cup (B \setminus N)$ and so

$$E^{c} = A^{c} \cap N^{c} = (A^{c} \cap B^{c}) \cup (N^{c} \cap (B \setminus N))$$

Since \mathcal{F} is a σ -algebra and $A, B \in F$, we know that $A^c \cap B^c \in \mathcal{F}$. Moreover, we know that $(N^c \cap (B \setminus N))$ is a null set since $(N^c \cap (B \setminus N)) \subseteq B \setminus N \subseteq B$. This shows that $E^c \in \mathcal{F}'$ since E^c can be expressed as the union of an event in \mathcal{F} and a null set. Finally, suppose that $E_1, E_2, \ldots, \in \mathcal{F}'$ are disjoint so that $E_j = A_j \cup N_j$ where A_1, A_2, \ldots , is a sequence of disjoint events and N_1, N_2, \ldots are null sets. Since N_j is a null set, there exist events $B_j \in \mathcal{F}$, $j = 1, 2, \ldots$, with $N_j \subseteq B_j$ and $\mathbf{P}\{B_j\} = 0$. Since

$$\bigcup_{j=1}^{\infty} N_j \subseteq \bigcup_{j=1}^{\infty} B_j$$

and countable subadditivity of \mathbf{P} implies

$$\mathbf{P}\left\{\bigcup_{j=1}^{\infty}B_j\right\} \le \sum_{j=1}^{\infty}\mathbf{P}\left\{B_j\right\} = 0.$$

we see that $\bigcup_{j=1}^{\infty} N_j$ is a null set. Therefore,

$$\bigcup_{j=1}^{\infty} E_j = \bigcup_{j=1}^{\infty} (A_j \cup N_j) = \left(\bigcup_{j=1}^{\infty} A_j\right) \cup \left(\bigcup_{j=1}^{\infty} N_j\right) \in \mathcal{F}'$$
(9.3)

since $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}$ and $\bigcup_{j=1}^{\infty} N_j$ is a null set. We also note that the fact that $\mathcal{F}' = \mathcal{F} \cup \mathcal{N}$ is a σ -algebra implies that \mathcal{F}' must be the smallest σ -algebra containing \mathcal{F} and \mathcal{N} . Finally, to show that \mathbf{P}' is a probability on (Ω, \mathcal{F}') , we begin by noting that

$$\mathbf{P}'\{\Omega\} = \mathbf{P}'\{\Omega \cup \emptyset\} = \mathbf{P}\{\Omega\} = 1.$$

Moreover, using (9.3), we find that if $E_1, E_2, \ldots \in \mathcal{F}'$ are disjoint, then

$$\mathbf{P}'\left\{\bigcup_{j=1}^{\infty} E_j\right\} = \mathbf{P}'\left\{\left(\bigcup_{j=1}^{\infty} A_j\right) \cup \left(\bigcup_{j=1}^{\infty} N_j\right)\right\} = \mathbf{P}\left\{\bigcup_{j=1}^{\infty} A_j\right\} = \sum_{j=1}^{\infty} \mathbf{P}\left\{A_j\right\}$$
$$= \sum_{j=1}^{\infty} \mathbf{P}'\left\{A_j \cup N_j\right\}$$
$$= \sum_{j=1}^{\infty} \mathbf{P}'\left\{E_j\right\}$$

and the proof is complete.

Application: Construction of the Uniform Probability on $([0,1], \mathcal{B}_1)$

Recall from Lecture #5 that \mathcal{B}_1 denotes the Borel sets of [0, 1]; that is, the σ -algebra generated by the open subsets of [0, 1]. Also recall that one condition we want the uniform probability to satisfy is that the probability of an interval $(a, b] \subseteq [0, 1]$ is equal to its length;

that is, if $0 \le a < b \le 1$, we want $\mathbf{P}\{(a, b]\} = b - a$. This corresponds to the function $F : \mathbb{R} \to [0, 1]$ given by

$$F(x) = \begin{cases} 0, & \text{if } x < 0, \\ x, & \text{if } 0 \le x \le 1, \\ 1, & \text{if } x > 1, \end{cases}$$

By Theorem 9.2 we know F uniquely classifies the uniform probability on $([0, 1], \mathcal{B}_1)$. We remark in closing that if **P** denotes the uniform probability on $([0, 1], \mathcal{B}_1)$, then one can consider the σ -algebra

$$\mathcal{M}_1 = \mathcal{B}_1 \cup \mathcal{N}$$

where \mathcal{N} denotes the **P**-null sets and \mathcal{M}_1 is known as the σ -algebra of Lebesgue measurable sets of [0, 1]. Thus, we have the chain of containments

$$\mathcal{B}_1 \subseteq \mathcal{M}_1 \subsetneq 2^{[0,1]}.$$

The question of whether or not \mathcal{B}_1 and \mathcal{M}_1 are equal remained open for many years. It was shown by Lusin in 1927 that $\mathcal{B}_1 \subsetneq \mathcal{M}_1$.

Remark. In courses on measure theory (such as Math 810), the uniform probability on $([0, 1], \mathcal{B}_1)$ is also known as *Lebesgue measure*. In those courses, however, the usual approach is to construct the Lebesgue measure on \mathcal{M}_1 directly and then restrict it to \mathcal{B}_1 .