Lecture \#9: Construction of a Probability (Part II)

Recall that we have been trying to construct a uniform probability on $[0,1]$. As we saw in Lecture $\# 4$, it is not possible to construct a uniform probability for every subset of $[0,1]$. This meant that $2^{[0,1]}$ was too big a σ-algebra to use. We then discussed the Borel sets and indicated that the Borel σ-algebra is the "right" one to use. Today we will formalize that discussion.

Also recall from Lecture $\# 6$ that we had the following corollary to the monotone class theorem.

Corollary 9.1. Let \mathcal{F} be a σ-algebra, and let \mathbf{P}, \mathbf{Q} be two probabilities on (Ω, \mathcal{F}). Suppose that \mathbf{P}, \mathbf{Q} agree on a class $\mathcal{C} \subseteq \mathcal{F}$ which is closed under finite intersections. If $\sigma(\mathcal{C})=\mathcal{F}$, then $\mathbf{P}=\mathbf{Q}$.

In particular, note that if \mathcal{F}_{0} is an algebra, then \mathcal{F}_{0} is necessarily closed under finite intersections.

Theorem 9.2. Consider the real numbers \mathbb{R} with the Borel σ-algebra \mathcal{B}, and let \mathbf{P} be a probability on $(\mathbb{R}, \mathcal{B})$. The function $F: \mathbb{R} \rightarrow[0,1]$ defined by $F(x)=\mathbf{P}\{(-\infty, x]\}, x \in \mathbb{R}$, characterizes \mathbf{P}.

Proof. Let \mathcal{B}_{0} denote the set of finite disjoint unions of intervals of the form $(x, y]$ for $-\infty \leq$ $x \leq y \leq \infty$ following the convention that $(x, \infty]=(x, \infty)$. It is easily checked that \mathcal{B}_{0} is an algebra.
As we will now show, $\sigma\left(\mathcal{B}_{0}\right)=\mathcal{B}$. To begin, observe that

$$
(a, b)=\bigcup_{n=N}^{\infty}\left(a, b-\frac{1}{n}\right]
$$

for some sufficiently large N. This implies that $\mathcal{B} \subseteq \sigma\left(\mathcal{B}_{0}\right)$. Moreover,

$$
(a, b]=\bigcap_{n=1}^{\infty}\left(a, b+\frac{1}{n}\right)
$$

so that $\mathcal{B}_{0} \subseteq \mathcal{B}$ and therefore $\sigma\left(\mathcal{B}_{0}\right) \subseteq \mathcal{B}$. Taken together, we have $\sigma\left(\mathcal{B}_{0}\right)=\mathcal{B}$.
We now observe that

$$
\mathbf{P}\{(x, y]\}=\mathbf{P}\{(-\infty, y] \backslash(-\infty, x]\}=\mathbf{P}\{(-\infty, y]\}-\mathbf{P}\{(-\infty, x]\}=F(y)-F(x)
$$

and so if $A \in \mathcal{B}_{0}$ is of the form

$$
A=\bigcup_{i=1}^{n}\left(x_{i}, y_{i}\right]
$$

with $y_{i}<x_{i+1}$, then

$$
\mathbf{P}\{A\}=\sum_{i=1}^{n}\left[F\left(y_{i}\right)-F\left(x_{i}\right)\right] .
$$

Suppose that \mathbf{Q} is another probability on (Ω, \mathcal{F}) satisfying $F(x)=\mathbf{Q}\{(-\infty, x]\}$. Repeating the argument just given shows that $\mathbf{Q}\{A\}=\mathbf{P}\{A\}$ for every $A \in \mathcal{B}_{0}$. Since \mathcal{B}_{0} is an algebra and $\mathbf{Q}=\mathbf{P}$ on \mathcal{B}_{0}, we conclude from the corollary to the monotone class theorem that $\mathbf{Q}=\mathbf{P}$ on \mathcal{B}.

Definition. Let \mathbf{P} be a probability on \mathcal{F}. A null set (or a negligible set) for \mathbf{P} is a subset $A \subseteq \Omega$ such that there exists a $B \in \mathcal{F}$ with $A \subseteq B$ and $\mathbf{P}\{B\}=0$.

Note. Suppose that $B \in \mathcal{F}$ with $\mathbf{P}\{B\}=0$. Let $A \subseteq B$ as shown below.

If $A \in \mathcal{F}$, then we can conclude that $\mathbf{P}\{A\}=0$. However, if $A \notin \mathcal{F}$, then $\mathbf{P}\{A\}$ does not make sense.
In either case, A is a null set. Thus, it is natural to define $\mathbf{P}\{A\}=0$ for all null sets.
Theorem 9.3. Suppose that $(\Omega, \mathcal{F}, \mathbf{P})$ is a probability space so that \mathbf{P} is a probability on the σ-algebra \mathcal{F}. Let \mathcal{N} denote the set of all null sets for \mathbf{P}. If

$$
\mathcal{F}^{\prime}=\mathcal{F} \cup \mathcal{N}=\{A \cup N: A \in \mathcal{F}, N \in \mathcal{N}\},
$$

then \mathcal{F}^{\prime} is a σ-algebra, called the \mathbf{P}-completion of \mathcal{F}, and is the smallest σ-algebra containing \mathcal{F} and \mathcal{N}. Furthermore, \mathbf{P} extends uniquely to a probability on \mathcal{F}^{\prime} (denoted by \mathbf{P}^{\prime}) by setting

$$
\mathbf{P}^{\prime}\{A \cup N\}=\mathbf{P}\{A\}
$$

for $A \in \mathcal{F}, N \in \mathcal{N}$.

Proof. To show that \mathcal{F}^{\prime} is a σ-algebra, we need to verify that the three conditions in the definition of σ-algebra are met. To that end, we will first show that $\Omega \in \mathcal{F}^{\prime}$. Since $\emptyset \in \mathcal{F}$ has $\mathbf{P}\{\emptyset\}=0$ and $\emptyset \subseteq \emptyset$, we conclude that $\emptyset \in \mathcal{N}$ is a null set. If we now write $\Omega=\Omega \cup \emptyset$ then we have expressed Ω as a union of an event in \mathcal{F} (namely Ω) and a null set (namely \emptyset). This shows $\Omega \in \mathcal{F}^{\prime}$. We will now show that \mathcal{F}^{\prime} is closed under complements. That is, suppose $E \in \mathcal{F}^{\prime}$ so that $E=A \cup N$ for some event $A \in \mathcal{F}$ and some null set $N \in \mathcal{N}$. Since N is a null set, we know there exists some event $B \in \mathcal{F}$ with $\mathbf{P}\{B\}=0$. We now observe that $N^{c}=B^{c} \cup(B \backslash N)$ and so

$$
E^{c}=A^{c} \cap N^{c}=\left(A^{c} \cap B^{c}\right) \cup\left(N^{c} \cap(B \backslash N)\right)
$$

Since \mathcal{F} is a σ-algebra and $A, B \in F$, we know that $A^{c} \cap B^{c} \in \mathcal{F}$. Moreover, we know that $\left(N^{c} \cap(B \backslash N)\right)$ is a null set since $\left(N^{c} \cap(B \backslash N)\right) \subseteq B \backslash N \subseteq B$. This shows that $E^{c} \in \mathcal{F}^{\prime}$ since E^{c} can be expressed as the union of an event in \mathcal{F} and a null set. Finally, suppose that $E_{1}, E_{2}, \ldots, \in \mathcal{F}^{\prime}$ are disjoint so that $E_{j}=A_{j} \cup N_{j}$ where A_{1}, A_{2}, \ldots, is a sequence of disjoint events and N_{1}, N_{2}, \ldots are null sets. Since N_{j} is a null set, there exist events $B_{j} \in \mathcal{F}$, $j=1,2, \ldots$, with $N_{j} \subseteq B_{j}$ and $\mathbf{P}\left\{B_{j}\right\}=0$. Since

$$
\bigcup_{j=1}^{\infty} N_{j} \subseteq \bigcup_{j=1}^{\infty} B_{j}
$$

and countable subadditivity of \mathbf{P} implies

$$
\mathbf{P}\left\{\bigcup_{j=1}^{\infty} B_{j}\right\} \leq \sum_{j=1}^{\infty} \mathbf{P}\left\{B_{j}\right\}=0
$$

we see that $\cup_{j=1}^{\infty} N_{j}$ is a null set. Therefore,

$$
\begin{equation*}
\bigcup_{j=1}^{\infty} E_{j}=\bigcup_{j=1}^{\infty}\left(A_{j} \cup N_{j}\right)=\left(\bigcup_{j=1}^{\infty} A_{j}\right) \cup\left(\bigcup_{j=1}^{\infty} N_{j}\right) \in \mathcal{F}^{\prime} \tag{9.3}
\end{equation*}
$$

since $\cup_{j=1}^{\infty} A_{j} \in \mathcal{F}$ and $\cup_{j=1}^{\infty} N_{j}$ is a null set. We also note that the fact that $\mathcal{F}^{\prime}=\mathcal{F} \cup \mathcal{N}$ is a σ-algebra implies that \mathcal{F}^{\prime} must be the smallest σ-algebra containing \mathcal{F} and \mathcal{N}. Finally, to show that \mathbf{P}^{\prime} is a probability on $\left(\Omega, \mathcal{F}^{\prime}\right)$, we begin by noting that

$$
\mathbf{P}^{\prime}\{\Omega\}=\mathbf{P}^{\prime}\{\Omega \cup \emptyset\}=\mathbf{P}\{\Omega\}=1
$$

Moreover, using (9.3), we find that if $E_{1}, E_{2}, \ldots \in \mathcal{F}^{\prime}$ are disjoint, then

$$
\begin{aligned}
\mathbf{P}^{\prime}\left\{\bigcup_{j=1}^{\infty} E_{j}\right\}=\mathbf{P}^{\prime}\left\{\left(\bigcup_{j=1}^{\infty} A_{j}\right) \cup\left(\bigcup_{j=1}^{\infty} N_{j}\right)\right\}=\mathbf{P}\left\{\bigcup_{j=1}^{\infty} A_{j}\right\} & =\sum_{j=1}^{\infty} \mathbf{P}\left\{A_{j}\right\} \\
& =\sum_{j=1}^{\infty} \mathbf{P}^{\prime}\left\{A_{j} \cup N_{j}\right\} \\
& =\sum_{j=1}^{\infty} \mathbf{P}^{\prime}\left\{E_{j}\right\}
\end{aligned}
$$

and the proof is complete.

Application: Construction of the Uniform Probability on ($[0,1], \mathcal{B}_{1}$)

Recall from Lecture $\# 5$ that \mathcal{B}_{1} denotes the Borel sets of $[0,1]$; that is, the σ-algebra generated by the open subsets of $[0,1]$. Also recall that one condition we want the uniform probability to satisfy is that the probability of an interval $(a, b] \subseteq[0,1]$ is equal to its length;
that is, if $0 \leq a<b \leq 1$, we want $\mathbf{P}\{(a, b]\}=b-a$. This corresponds to the function $F: \mathbb{R} \rightarrow[0,1]$ given by

$$
F(x)= \begin{cases}0, & \text { if } x<0 \\ x, & \text { if } 0 \leq x \leq 1 \\ 1, & \text { if } x>1\end{cases}
$$

By Theorem 9.2 we know F uniquely classifies the uniform probability on $\left([0,1], \mathcal{B}_{1}\right)$.
We remark in closing that if \mathbf{P} denotes the uniform probability on $\left([0,1], \mathcal{B}_{1}\right)$, then one can consider the σ-algebra

$$
\mathcal{M}_{1}=\mathcal{B}_{1} \cup \mathcal{N}
$$

where \mathcal{N} denotes the \mathbf{P}-null sets and \mathcal{M}_{1} is known as the σ-algebra of Lebesgue measurable sets of $[0,1]$. Thus, we have the chain of containments

$$
\mathcal{B}_{1} \subseteq \mathcal{M}_{1} \subsetneq 2^{[0,1]}
$$

The question of whether or not \mathcal{B}_{1} and \mathcal{M}_{1} are equal remained open for many years. It was shown by Lusin in 1927 that $\mathcal{B}_{1} \subsetneq \mathcal{M}_{1}$.

Remark. In courses on measure theory (such as Math 810), the uniform probability on ($[0,1], \mathcal{B}_{1}$) is also known as Lebesgue measure. In those courses, however, the usual approach is to construct the Lebesgue measure on \mathcal{M}_{1} directly and then restrict it to \mathcal{B}_{1}.

