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Lecture #8: Independence and Conditional Probability

Definition. Let (Ω,F ,P) be a probability space. The events A,B ∈ F are said to be
independent if

P {A ∩B} = P {A} ·P {B} .

A collection (Ai)i∈I is an independent collection if every finite subset J of I satisfies

P

�
�

i∈J

Ai

�
=

�

i∈J

P {Ai} .

We often say that (Ai) are mutually independent. Let A1 and A2 be two sub-σ-algebras of
F . We say that A1 and A2 are independent if

P {A1 ∩ A2} = P {A1} ·P {A2}

for every A1 ∈ A1 and A2 ∈ A2.

Example 8.1. Let Ω = {1, 2, 3, 4} and let F = 2Ω. Define the probability P : F → [0, 1] by

P {A} =
|A|

4
, A ∈ F .

In particular,

P {1} = P {2} = P {3} = P {4} =
1

4
.

Let A = {1, 2}, B = {1, 3}, and C = {2, 3}.

• Since

P {A ∩ B} = P {1} =
1

4
=

1

2
·
1

2
= P {A} ·P {B}

we conclude that A and B are independent.

• Since

P {A ∩ C} = P {2} =
1

4
=

1

2
·
1

2
= P {A} ·P {C}

we conclude that A and C are independent.

• Since

P {B ∩ C} = P {3} =
1

4
=

1

2
·
1

2
= P {B} ·P {C}

we conclude that B and C are independent.

However,
P {A ∩B ∩ C} = P {∅} = 0 �= P {A} ·P {B} ·P {C}

so that A, B, C are NOT independent. Thus, we see that the events A, B, C are pairwise
independent but not mutually independent.
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Notation. We often use independent as synonymous with mutually independent.

Definition. Let A and B be events with P {B} > 0. The conditional probability of A given
B is defined by

P {A|B} =
P {A ∩ B}

P {B}
.

Theorem 8.2. Let P : F → [0, 1] be a probability and let A, B ∈ F be events. If P {B} > 0,
then A and B are independent if and only if P {A|B} = P {A}.

Proof. To prove this theorem we must show both implications. Assume first that A and B

are independent. Then by definition,

P {A ∩B} = P {A} ·P {B} .

But also by definition we have

P {A|B} =
P {A ∩ B}

P {B}
.

Thus, substituting the first expression into the second gives

P {A|B} =
P {A} ·P {B}

P {B}
= P {A}

as required. Conversely, suppose that P {A|B} = P {A}. By definition,

P {A|B} =
P {A ∩ B}

P {B}

which implies that

P {A} =
P {A ∩ B}

P {B}

and so P {A ∩ B} = P {A} ·P {B}. Thus, A and B are independent.

Theorem 8.3. Let (Ω,F ,P) be a probability space, and suppose that B ∈ F is an event
with P {B} > 0. The function Q : F → [0, 1] defined by Q {A} = P {A|B} is a probability
on (Ω,F) called the conditional probability measure given B.

Proof. Define the set function Q : F → [0, 1] by setting Q {A} = P {A|B}. In order to show
that Q is a probability, we must check both conditions in the definition. Since Ω ∈ F , we
have

Q {Ω} = P {Ω|B} =
P {Ω ∩ B}

P {B}
=

P {B}

P {B}
= 1.

If A1, A2, . . . ∈ F are pairwise disjoint, then

Q

� ∞�

i=1

Ai

�
= P

� ∞�

i=1

Ai

����B
�

=
1

P {B}
P

�� ∞�

i=1

Ai

�
∩B

�
=

1

P {B}
P

� ∞�

i=1

(Ai ∩B)

�
.
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However, since the (Ai) are pairwise disjoint, so too are the (Ai ∩ B). Thus, by countable
additivity of the probability P, we see

P

� ∞�

i=1

(Ai ∩ B)

�
=

∞�

i=1

P {Ai ∩ B} =
∞�

i=1

P {Ai|B}P {B}

which implies that

Q

� ∞�

i=1

Ai

�
=

∞�

i=1

P {Ai|B} =
∞�

i=1

Q {Ai}

as required.

Definition. Let (Ω,F ,P) be a probability space. A collection of events (En) is called a
partition of Ω if P {En} > 0 for all n, the events (En) are pairwise disjoint, and

�

n

En = Ω.

Theorem 8.4 (Partition Theorem). If (En) partition Ω and A ∈ F , then

P {A} =
�

n

P {A|En}P {En} .

Proof. Notice that

A = A ∩ Ω = A ∩

�
�

n

En

�
=

�

n

(A ∩ En)

since (En) partition Ω. Since the (En) are disjoint, so too are the (A ∩ En). Therefore, by
countable additivity of the probability P, we find

P {A} = P

�
�

n

(A ∩ En)

�
=

�

n

P {A ∩ En} .

By the definition of conditional probability, P {A ∩ En} = P {A|En}P {En} and so

P {A} =
�

n

P {A|En}P {En}

as required.

Armed with the partition theorem and the definition of conditional probability, we can now
derive Bayes’ theorem. Since A ∩ B = B ∩ A we see that P {A ∩B} = P {B ∩ A} and so
by the definition of conditional probability

P {A|B}P {B} = P {B|A}P {A} .

Assuming that P {A} > 0, solving gives

P {B|A} =
P {A|B}P {B}

P {A}
.
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If P {B} ∈ (0, 1), then since (B,B
c) partition Ω, we can use the partition theorem to

conclude
P {A} = P {A|B}P {B}+P {A|B

c
}P {B

c
}

and so

P {B|A} =
P {A|B}P {B}

P {A|B}P {B}+P {A|Bc}P {Bc}
.

More generally, this reasoning leads to the full version of Bayes’ theorem.

Theorem 8.5 (Bayes’ Theorem). Let (Ω,F ,P) be a probability space. If (En) partition Ω
and A ∈ F with P {A} > 0, then

P {Ej|A} =
P {A|Ej}P {Ej}�

n

P {A|En}P {En}

.

Proof. As above, we have

P {Ej|A} =
P {A|Ej}P {Ej}

P {A}
.

By the partition theorem, we have

P {A} =
�

n

P {A|En}P {En}

and so combining these two equations proves the theorem.
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