Statistics 451 (Fall 2013)
Some More Basic Set Theory
Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a function. The range of f is

$$
\left\{y \in \mathbb{R}^{m}: f(x)=y \text { for some } x \in \mathbb{R}^{n}\right\}
$$

Note that the range of f is a subset of \mathbb{R}^{m}. If $A \subseteq \mathbb{R}^{n}$, then the image of A under f is the subset of the range (and therefore a subset of \mathbb{R}^{m}) given by

$$
f(A)=\{f(x): x \in A\}
$$

If $B \subseteq \mathbb{R}^{m}$, then the preimage of B under f is the subset of the domain of f (and therefore a subset of \mathbb{R}^{n}) given by

$$
f^{-1}(B)=\{x \in A: f(x)=y \text { for some } y \in B\}
$$

Example. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by $f(x)=x^{2}$. Determine
(i) the range of f,
(ii) the image of $A=[-2,2]$ under f,
(iii) the image of $A=(-5,-3) \cup[1,4]$ under f, and
(iv) the preimage of $B=(9,25)$ under f.

Solution.

(i) The range of f is $[0, \infty)$.
(ii) The image of $[-2,2]$ is $f([-2,2])=[0,4]$.
(iii) The image of $(-5,-3) \cup[1,4]$ is $f((-5,-3) \cup[1,4])=(9,25) \cup[1,16]=[1,25)$.
(iv) The preimage of $(9,25)$ is $f^{-1}((9,25))=(-5,-3) \cup(3,5)$.

Exercise. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is any function. Show that
(i) if $B \subseteq \mathbb{R}^{m}$, then $\left[f^{-1}(B)\right]^{c}=f^{-1}\left(B^{c}\right)$,
(ii) if $B_{1}, B_{2}, \ldots \subseteq \mathbb{R}^{m}$, then

$$
f^{-1}\left(\bigcup_{j=1}^{\infty} B_{j}\right)=\bigcup_{j=1}^{\infty} f^{-1}\left(B_{j}\right)
$$

and
(iii) if $B_{1}, B_{2}, \ldots \subseteq \mathbb{R}^{m}$, then

$$
f^{-1}\left(\bigcap_{j=1}^{\infty} B_{j}\right)=\bigcap_{j=1}^{\infty} f^{-1}\left(B_{j}\right) .
$$

In particular, it follows from (iii) that if $B_{1}, B_{2}, \ldots \subseteq \mathbb{R}^{m}$ are disjoint, then $f^{-1}\left(B_{1}\right), f^{-1}\left(B_{2}\right), \ldots$ are disjoint.

