(3.1) If $A \cap B=\emptyset$, then by Theorem 2.2 we conclude $P(A \cap B)=P(\emptyset)=0$. Hence, in order for A and B to be independent, it must be the case that $P(A \cap B)=P(A) \cdot P(B)=0$. The product of two real numbers is 0 if and only if at least one of those numbers is 0 . We thus conclude that at least one of $P(A)$ and $P(B)$ must be 0 in order for A and B to be independent.
(3.3) Suppose (Ω, \mathcal{A}, P) is a probability space and that $C \in \mathcal{A}$ with $P(C)>0$. If $Q(A)=P(A \mid C)$ for $A \in \mathcal{A}$, then by Theorem 3.2 (b) it follows that Q is a probability measure on (Ω, \mathcal{A}). It now follows from Theorem 2.2 that Q is additive. That is, if $A_{1}, \ldots, A_{n} \in \mathcal{A}$ are disjoint, then

$$
P\left(\bigcup_{i=1}^{n} A_{i} \mid C\right)=Q\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} Q\left(A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i} \mid C\right) .
$$

(3.6) Using the definition of conditional probability,

$$
P(\text { you have AIDS } \mid \text { test positive })=\frac{P(\text { test positive } \mid \text { you have AIDS }) \cdot P(\text { you have AIDS })}{P(\text { test positive })} .
$$

We now use the information given in the problem, but need to be careful about the wording. We are told that $P($ you have AIDS $)=1 / 10000=0.0001$, and $P($ test positive|you have AIDS $)=0.99$. However, the 5% false positive means P (test positive|you do NOT have AIDS) $=0.05$. Therefore, we must calculate P (test positive) using Exercise 3.5. Thus,

$$
\begin{aligned}
& P(\text { test positive }) \\
& \quad=P(\text { test positive } \mid \text { you have AIDS }) \cdot P(\text { you have AIDS }) \\
& \quad \\
& \quad+P(\text { test positive } \mid \text { you do NOT have AIDS }) \cdot P(\text { you do NOT have AIDS }) \\
& =
\end{aligned} 0.99 \cdot 0.0001+0.05 \cdot 0.9999 \text {) } 0.050094
$$

so that

$$
P(\text { you have AIDS } \mid \text { test positive })=\frac{0.99 \times 0.0001}{0.050094}=\frac{1}{506} \approx 0.001976 .
$$

(3.11) Suppose that R_{i} is the event $\{$ red ball on draw $i\}$, and that B_{i} is the event $\{$ blue ball on draw $i\}$. The problem specifies that

$$
P\left(B_{1}\right)=\frac{b}{b+r}, \quad P\left(R_{1}\right)=\frac{r}{b+r}, \quad P\left(B_{2} \mid B_{1}\right)=\frac{b+d}{b+r+d}, \quad P\left(B_{2} \mid R_{1}\right)=\frac{b}{b+r+d} .
$$

(a) Hence, using Exercise 3.5, we conclude that

$$
P\left(B_{2}\right)=P\left(B_{2} \mid B_{1}\right) \cdot P\left(B_{1}\right)+P\left(B_{2} \mid R_{1}\right) \cdot P\left(R_{1}\right)=\frac{b+d}{b+r+d} \cdot \frac{b}{b+r}+\frac{b}{b+r+d} \cdot \frac{r}{b+r}=\frac{b}{b+r} .
$$

(b) It then follows from Bayes' Theorem that

$$
P\left(B_{1} \mid B_{2}\right)=\frac{P\left(B_{2} \mid B_{1}\right) \cdot P\left(B_{1}\right)}{P\left(B_{2}\right)}=\frac{\frac{b+d}{b+r+d} \cdot \frac{b}{b+r}}{\frac{b}{b+r}}=\frac{b+d}{b+r+d} .
$$

(3.12) Let B_{n} denote the event that the nth ball drawn is blue. We will prove by induction that $P\left(B_{n}\right)=P\left(B_{1}\right)$ for all $n \geq 1$. When $n=2$, the direct computation in Exercise 3.11 shows $P\left(B_{2}\right)=$ $P\left(B_{1}\right)$. Suppose now that $P\left(B_{N}\right)=P\left(B_{1}\right)$ for some $N \geq 1$. We will show that $P\left(B_{N+1}\right)=P\left(B_{1}\right)$. Assume that at time N there are r^{\prime} red balls and b^{\prime} blue balls in the urn. Thus,

$$
P\left(B_{N}\right)=\frac{b^{\prime}}{r^{\prime}+b^{\prime}}
$$

But, by the induction hypothesis, $P\left(B_{N}\right)=P\left(B_{1}\right)$ so that

$$
\begin{equation*}
P\left(B_{N}\right)=\frac{b^{\prime}}{r^{\prime}+b^{\prime}}=\frac{b}{r+b} . \tag{H}
\end{equation*}
$$

Similar,

$$
P\left(R_{N}\right)=\frac{r^{\prime}}{r^{\prime}+b^{\prime}}=\frac{r}{r+b} .
$$

It follows from Exercise 3.5 that

$$
\begin{aligned}
P\left(B_{N+1}\right) & =P\left(B_{N+1} \mid B_{N}\right) \cdot P\left(B_{N}\right)+P\left(B_{N+1} \mid R_{N}\right) \cdot P\left(R_{N}\right) \\
& =\frac{b^{\prime}+d}{r^{\prime}+b^{\prime}+d} \cdot \frac{b^{\prime}}{r^{\prime}+b^{\prime}}+\frac{b^{\prime}}{r^{\prime}+b^{\prime}+d} \cdot \frac{r^{\prime}}{r^{\prime}+b^{\prime}} \\
& =\frac{b^{\prime}}{r^{\prime}+b^{\prime}} \\
& =\frac{b}{r+b}=P\left(B_{1}\right) \text { by the induction hypothesis (H) }
\end{aligned}
$$

Thus, by induction, $P\left(B_{n}\right)=P\left(B_{1}\right)$ for all $n \geq 1$.
(3.13) We must compute $P\left(B_{1} \mid B_{2} \cap \cdots \cap B_{n+1}\right)$. By definition of conditional probability,

$$
\begin{equation*}
P\left(B_{1} \mid B_{2} \cap \cdots \cap B_{n+1}\right)=\frac{P\left(B_{1} \cap B_{2} \cap \cdots \cap B_{n+1}\right)}{P\left(B_{2} \cap \cdots \cap B_{n+1}\right)} . \tag{*}
\end{equation*}
$$

Using Theorem 3.3, we calculate

$$
\begin{align*}
P\left(B_{1} \cap \cdots \cap B_{n+1}\right) & =P\left(B_{1}\right) \cdot P\left(B_{2} \mid B_{1}\right) \cdot P\left(B_{3} \mid B_{1} \cap B_{2}\right) \cdots \cdots P\left(B_{n+1} \mid B_{1} \cap \cdots \cap B_{n}\right) \\
& =\frac{b}{b+r} \cdot \frac{b+d}{b+r+d} \cdot \frac{b+2 d}{b+r+2 d} \cdots \cdots \frac{b+n d}{b+r+n d} \\
& =\prod_{k=0}^{n} \frac{b+k d}{b+r+k d} .
\end{align*}
$$

Using Exercise 3.5, we find

$$
\begin{equation*}
P\left(B_{2} \cap \cdots \cap B_{n+1}\right)=P\left(B_{1} \cap B_{2} \cap \cdots \cap B_{n+1}\right)+P\left(R_{1} \cap B_{2} \cap \cdots \cap B_{n+1}\right) . \tag{**}
\end{equation*}
$$

We can again use Theorem 3.3 to find that

$$
\begin{align*}
P\left(R_{1} \cap B_{2} \cap \cdots \cap B_{n+1}\right) & =P\left(R_{1}\right) \cdot P\left(B_{2} \mid R_{1}\right) \cdot P\left(B_{3} \mid R_{1} \cap B_{2}\right) \cdots \cdots P\left(B_{n+1} \mid R_{1} \cap B_{2} \cap \cdots \cap B_{n}\right) \\
& =\frac{r}{b+r} \cdot \frac{b}{b+r+d} \cdot \frac{b+d}{b+r+2 d} \cdots \cdots \frac{b+(n-1) d}{b+r+n d} \\
& =\frac{r}{b+r} \prod_{k=1}^{n} \frac{b+(k-1) d}{b+r+k d} .
\end{align*}
$$

Substituting (\dagger) and (\ddagger) into $(* *)$ yields

$$
\begin{equation*}
P\left(B_{2} \cap \cdots \cap B_{n+1}\right)=\prod_{k=0}^{n} \frac{b+k d}{b+r+k d}+\frac{r}{b+r} \prod_{k=1}^{n} \frac{b+(k-1) d}{b+r+k d} . \tag{***}
\end{equation*}
$$

Finally, substituting $(* * *)$ and (\dagger) into $(*)$ gives

$$
\begin{aligned}
P\left(B_{1} \mid B_{2} \cap \cdots \cap B_{n+1}\right) & =\frac{\prod_{k=0}^{n} \frac{b+k d}{b+r+k d}}{\prod_{k=0}^{n} \frac{b+k d}{b+r+k d}+\frac{r}{b+r} \prod_{k=1}^{n} \frac{b+(k-1) d}{b+r+k d}} \\
& =\frac{1}{1+\frac{r}{r+b} \cdot \frac{b+r}{b+n d}} \\
& =\frac{b+n d}{b+r+n d} .
\end{aligned}
$$

Note that

$$
\lim _{n \rightarrow \infty} P\left(B_{1} \mid B_{2} \cap \cdots \cap B_{n+1}\right)=\lim _{n \rightarrow \infty} \frac{b+n d}{b+r+n d}=1
$$

(4.1) If P is the $\operatorname{binomial}(n, p)$ distribution, then

$$
P(k \text { successes })=\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} .
$$

Substituting $\lambda=p n$ gives

$$
p^{k}(1-p)^{n-k}=\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}=\lambda^{k} n^{-k}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} .
$$

Furthermore,

$$
\frac{n!}{k!(n-k)!}=\frac{n \cdot(n-1) \cdots(n-k+1)}{k!}
$$

so that combining everything gives

$$
\begin{aligned}
P(k \text { successes }) & =\frac{n \cdot(n-1) \cdots(n-k+1)}{k!} \lambda^{k} n^{-k}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} \\
& =\frac{\lambda^{k}}{k!}\left(1-\frac{\lambda}{n}\right)^{n}\left\{\frac{n \cdot(n-1) \cdots(n-k+1)}{n^{k}}\right\}\left(1-\frac{\lambda}{n}\right)^{-k} \\
& =\frac{\lambda^{k}}{k!}\left(1-\frac{\lambda}{n}\right)^{n}\left\{\left(\frac{n}{n}\right)\left(\frac{n-1}{n}\right) \cdots\left(\frac{n-k+1}{n}\right)\right\}\left(1-\frac{\lambda}{n}\right)^{-k}
\end{aligned}
$$

Next, taking the limit as $n \rightarrow \infty, \lambda=$ constant, gives
$\lim P(k$ successes $)$

$$
\begin{aligned}
& =\lim \left[\frac{\lambda^{k}}{k!}\left(1-\frac{\lambda}{n}\right)^{n}\left\{\left(\frac{n}{n}\right)\left(\frac{n-1}{n}\right) \cdots\left(\frac{n-k+1}{n}\right)\right\}\left(1-\frac{\lambda}{n}\right)^{-k}\right] \\
& =\lim \left[\frac{\lambda^{k}}{k!}\right] \lim \left[\left(1-\frac{\lambda}{n}\right)^{n}\right] \lim \left[\left\{\left(\frac{n}{n}\right)\left(\frac{n-1}{n}\right) \cdots\left(\frac{n-k+1}{n}\right)\right\}\right] \lim \left[\left(1-\frac{\lambda}{n}\right)^{-k}\right] \\
& =\frac{\lambda^{k}}{k!} \cdot e^{-\lambda} \cdot 1 \cdot 1 \\
& =\frac{e^{-\lambda} \lambda^{k}}{k!}
\end{aligned}
$$

