Stat 441 Winter 2009
Assignment \#6
This assignment is due at the beginning of class on Friday, February 27, 2009.

1. Suppose that $\left\{B_{t}, t \geq 0\right\}$ is a standard Brownian motion with $B_{0}=0$. Determine an expression for

$$
\int_{0}^{t} \sin \left(B_{s}\right) \mathrm{d} B_{s}
$$

that does not involve Itô integrals.
2. Suppose that $\left\{B_{t}, t \geq 0\right\}$ is a standard Brownian motion with $B_{0}=0$, and suppose further that the process $\left\{X_{t}, t \geq 0\right\}, X_{0}=a>0$, satisfies the stochastic differential equation

$$
\mathrm{d} X_{t}=X_{t} \mathrm{~d} B_{t}+\frac{1}{X_{t}} \mathrm{~d} t .
$$

(a) If $f(x)=x^{2}$, determine $\mathrm{d} f\left(X_{t}\right)$.
(b) If $f(t, x)=t^{2} x^{2}$, determine $\mathrm{d} f\left(t, X_{t}\right)$.
3. We know from Theorem 14.6 that any Itô integral is a martingale. If we combine this fact with Itô's formula, then we have a method for "generating" martingales. That is, if we can find functions f for which we can make the $\mathrm{d} t$ term in Itô's formula vanish, then we have found a martingale. For instance, Version I of Itô's formula tells us that

$$
\mathrm{d} f\left(B_{t}\right)=f^{\prime}\left(B_{t}\right) \mathrm{d} B_{t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right) \mathrm{d} t .
$$

Hence, if we can find $f(x)$ such that $f^{\prime \prime}(x)=0$, then $f\left(B_{t}\right)$ will be a martingale. Since $f^{\prime \prime}(x)=0$ implies that $f(x)=a x+b$ where $a, b \in \mathbb{R}$ are arbitrary constants, any linear transformation of Brownian motion is a martingale. That is, $\left\{M_{t}, t \geq 0\right\}$ where $M_{t}=a B_{t}+b$ is a martingale.

More interesting examples arise when we consider Version II of Itô's formula which tells us that

$$
\mathrm{d} f\left(t, B_{t}\right)=f^{\prime}\left(t, B_{t}\right) \mathrm{d} B_{t}+\left[\dot{f}\left(t, B_{t}\right)+\frac{1}{2} f^{\prime \prime}\left(t, B_{t}\right)\right] \mathrm{d} t .
$$

Hence, if we can find $f(t, x)$ such that

$$
\dot{f}(t, x)+\frac{1}{2} f^{\prime \prime}(t, x)=0
$$

then $f\left(t, B_{t}\right)$ will be a martingale.
Notice that $f(t, x)=x^{2}-t, f(t, x)=x^{3}-3 t x$, and $f(t, x)=x^{4}-6 t x^{2}+3 t^{2}$ all work. (Take a look back at Exercise 7.6; you can now see how I created that exercise.)
(a) Find functions (of the two variables t and x) that contain leading terms x^{5} and x^{6}, respectively, that generate martingales.

There are, in fact, non-polynomial solutions to this equation such as

$$
f(t, x)=e^{t / 2} \sin (x)
$$

(b) Find some other non-polynomial solutions, including one involving $\cos (x)$.
4. Suppose that $\left\{B_{t}, t \geq 0\right\}$ is a standard Brownian motion, and let $\left\{\mathcal{F}_{t}, t \geq 0\right\}$ denote the Brownian filtration. Problem $\# 4$ on Assignment $\# 3$ asked you to compute $\mathbb{E}\left(\sin \left(B_{t}\right) \mid \mathcal{F}_{s}\right)$ for $0 \leq s<t$ and to use this result to find a function of $\sin \left(B_{t}\right)$ that is a martingale. The reason that the problem was too difficult for us to solve at the time was that we were unable to evaluate the resulting integral. That is, suppose that $s<t$ so that the addition formula for sine implies

$$
\sin \left(B_{t}\right)=\sin \left(B_{t}-B_{s}+B_{s}\right)=\sin \left(B_{t}-B_{s}\right) \cos \left(B_{s}\right)+\sin \left(B_{s}\right) \cos \left(B_{t}-B_{s}\right)
$$

Thus,

$$
\mathbb{E}\left(\sin \left(B_{t}\right) \mid \mathcal{F}_{s}\right)=\cos \left(B_{s}\right) \mathbb{E}\left[\sin \left(B_{t}-B_{s}\right)\right]+\sin \left(B_{s}\right) \mathbb{E}\left[\cos \left(B_{t}-B_{s}\right)\right]
$$

using the independence of Brownian increments and properties of conditional expectation. Since $B_{t}-B_{s} \sim \mathcal{N}(0, t-s)$, we can write

$$
\mathbb{E}\left[\sin \left(B_{t}-B_{s}\right)\right]=\frac{1}{\sqrt{2 \pi(t-s)}} \int_{-\infty}^{\infty} \exp \left\{-\frac{x^{2}}{2(t-s)}\right\} \sin (x) \mathrm{d} x
$$

and

$$
\mathbb{E}\left[\cos \left(B_{t}-B_{s}\right)\right]=\frac{1}{\sqrt{2 \pi(t-s)}} \int_{-\infty}^{\infty} \exp \left\{-\frac{x^{2}}{2(t-s)}\right\} \cos (x) \mathrm{d} x .
$$

The fact that $e^{-x^{2}} \sin (x)$ is an odd function implies that $\mathbb{E}\left[\sin \left(B_{t}-B_{s}\right)\right]=0$. The fact that $e^{-x^{2}} \cos (x)$ is an even function implies that

$$
\mathbb{E}\left[\cos \left(B_{t}-B_{s}\right)\right]=\frac{2}{\sqrt{2 \pi(t-s)}} \int_{0}^{\infty} \exp \left\{-\frac{x^{2}}{2(t-s)}\right\} \cos (x) \mathrm{d} x .
$$

Hence, we find

$$
\begin{equation*}
\mathbb{E}\left(\sin \left(B_{t}\right) \mid \mathcal{F}_{s}\right)=\left[\frac{2}{\sqrt{2 \pi(t-s)}} \int_{0}^{\infty} \exp \left\{-\frac{x^{2}}{2(t-s)}\right\} \cos (x) \mathrm{d} x\right] \sin \left(B_{s}\right) \tag{*}
\end{equation*}
$$

The previous problem implies that if $M_{t}=e^{t / 2} \sin \left(B_{t}\right)$, then $\left\{M_{t}, t \geq 0\right\}$ is a martingale with respect to the Brownian filtration. This means that $\mathbb{E}\left(M_{t} \mid \mathcal{F}_{s}\right)=M_{s}$, or equivalently,

$$
\mathbb{E}\left(e^{t / 2} \sin \left(B_{t}\right) \mid \mathcal{F}_{s}\right)=e^{s / 2} \sin \left(B_{s}\right)
$$

so that

$$
\begin{equation*}
\mathbb{E}\left(\sin \left(B_{t}\right) \mid \mathcal{F}_{s}\right)=e^{-(t-s) / 2} \sin \left(B_{s}\right) . \tag{**}
\end{equation*}
$$

Equating (*) and ($* *$) therefore implies that

$$
\frac{2}{\sqrt{2 \pi(t-s)}} \int_{0}^{\infty} \exp \left\{-\frac{x^{2}}{2(t-s)}\right\} \cos (x) \mathrm{d} x=e^{-(t-s) / 2}
$$

Using (b) of the previous exercise, mimic this calculation and compute $\mathbb{E}\left(\cos \left(B_{t}\right) \mid \mathcal{F}_{s}\right)$.
The value of this integral can also be found directly using the theory of residues as taught in Math 312: Complex Analysis.

