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Lecture #7, 8: Brownian Motion as a Model of a Fair Game

Suppose that we are interested in setting up a model of a fair game, and that we are going to
place bets on the outcomes of the individual rounds of this game. If we assume that a round
takes place at discrete times, say at times 1, 2, 3, . . ., and that the game pays even money
on unit stakes per round, then a reasonable probability model for encoding the outcome of
the jth game is via a sequence {Xj, j = 1, 2, . . .} of independent and identically distributed
random variables with

P{X1 = 1} = P{X1 = �1} =
1

2
.

That is, we can view Xj as the outcome of the jth round of this fair game. Although we
will assume that there is no game played at time 0, it will be necessary for our notation to
consider what “happens” at time 0; therefore, we will simply define X0 = 0.

Notice that the sequence {Xj, j = 1, 2, . . .} tracks the outcomes of the individual games. We
would also like to track our net number of “wins”; that is, we care about

nX

j=1

Xj,

the net number of “wins” after n rounds. (If this sum is negative, we realize that a negative
number of “wins” is an interpretation of a net “loss.”) Hence, we define the process {Sn, n =
0, 1, 2, . . .} by setting

Sn =
nX

j=0

Xj.

Of course, we know that {Sn, n = 0, 1, 2, . . .} is called a simple random walk, and so we use
a simple random walk as our model of a fair game being played in discrete time.

If we write Fn = �(X0, X1, . . . , Xn) to denote the information contained in the first n rounds
of this game, then we know from our earlier work that {Sn, n = 0, 1, 2, . . .} is a martingale
with respect to the filtration {Fn, n = 0, 1, 2, . . .}.
Notice that Sj � Sj�1 = Xj and so the increment Sj � Sj�1 is exactly the outcome of the
jth round of this fair game.

Suppose that we bet on the outcome of the jth round of this game and that (as assumed
above) the game pays even money on unit stakes; for example, if we flip a fair coin betting
$5 on “heads” and “heads” does, in fact, appear, then we win $5 plus our original $5, but if
“tails” appears, then we lose our original $5.

If we denote our betting strategy by Yj�1, j = 1, 2, . . ., so that Yj�1 represents the bet we
make on the jth round of the game, then In, our fortune after n rounds, is given by

In =
nX

j=1

Yj�1(Sj � Sj�1). (5.1)
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We also define I0 = 0. The process {In, n = 0, 1, 2, . . .} is called a discrete stochastic integral
(or the martingale transform of Y by S).

Remark. If we choose unit bets each round so that Yj�1 = 1, j = 1, 2, . . ., then

In =
nX

j=1

(Sj � Sj�1) = Sn

and so our “fortune” after n rounds is simply the position of the random walk Sn. We are
interested in what happens when Yj�1 is not constant in time, but rather varies with j.

Note that it is reasonable to assume that the bet you make on the jth round can only depend
on the outcomes of the previous j� 1 rounds. That is, you cannot “look into the future and
make your bet on the jth round based on what the outcome of the jth round will be.” In
mathematical language, we say that Yj�1 must be previsible (also called predictable).

Remark. The concept of a previsible stochastic process was intensely studied in the 1950s
by the French school of probability that included P. Lévy. Since the French word prévisible
is translated into English as foreseeable, there is no consistent English translation. Most
probabilists use previsible and predictable interchangeably. (Although, unfortunately, not
all do!)

A slight modification of Example 4.9 shows that {In, n = 0, 1, 2, . . .} is a martingale with
respect to the filtration {Fn, n = 0, 1, . . .}. Note that the requirement that Yj�1 be previsible
is exactly the requirement that allows {In, n = 0, 1, 2, . . .} to be a martingale.

It now follows from Theorem 4.4 that E(In) = 0 for all n since {In, n = 0, 1, 2, . . .} is a
martingale with I0 = 0. As we saw in Exercise 4.10, calculating the variance of the random
variable In is more involved. The following exercise generalizes that result and shows precisely
how the variance depends on the choice of the sequence Yj�1, j = 1, 2, . . ..

Exercise 5.1. Consider the martingale transform of Y by S given by (5.1). Show that

Var(In) =
nX

j=1

E(Y 2
j�1).

Suppose that instead of playing a round of the game at times 1, 2, 3, . . ., we play rounds more
frequently, say at times 0.5, 1, 1.5, 2, 2.5, 3, . . ., or even more frequently still. In fact, we can
imagine playing a round of the game at every time t � 0.

If this is hard to visualize, imagine the round of the game as being the price of a (fair) stock
at time t. The stock is assumed, equally likely, to move an infinitesmal amount up or an
infinitesmal amount down in every infinitesmal period of time.

Hence, if we want to model a fair game occurring in continuous time, then we need to find a
continuous limit of the simple random walk. This continuous limit is Brownian motion, also
called the scaling limit of simple random walk. To explain what this means, suppose that
{Sn, n = 0, 1, 2, . . .} is a simple random walk. For N = 1, 2, 3, . . ., define the scaled random
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walk B

(N)
t , 0  t  1, to be the continuous process on the time interval [0, 1] whose value at

the fractional times 0, 1
N ,

2
N , . . . ,

N�1
N , 1 is given by setting

B

(N)
j

N

=
1p
N

Sj, j = 0, 1, 2, . . . , N,

and for other times is defined by linear interpolation. As N ! 1, the distribution of the
process {B(N)

t , 0  t  1} converges to the distribution of a process {Bt, 0  t  1} satisfying
the following properties:

• B0 = 0,

• for any 0  s  t  1, the random variable Bt �Bs is normally distributed with mean
0 and variance t� s; that is, Bt � Bs ⇠ N (0, t� s),

• for any integer k and any partition 0  t1  t2  · · ·  tk  1, the random variables
Bt

k

� Bt
k�1

, . . . , Bt2 � Bt1 , Bt1 are independent, and

• the trajectory t 7! Bt is continuous.

By piecing together independent copies of this process, we can construct a Brownian motion
{Bt, t � 0} defined for all times t � 0 satisfying the above properties (without, of course, the
restriction in (b) that t  1 and the restriction in (c) that tk  1). Thus, we now suppose
that {Bt, t � 0} is a Brownian motion with B0 = 0.

Exercise 5.2. Deduce from the definition of Brownian motion that for each t > 0, the
random variable Bt is normally distributed with mean 0 and variance t. Why does this
imply that E(B2

t ) = t?

Exercise 5.3. Deduce from the definition of Brownian motion that for 0  s < t, the
distribution of the random variable Bt � Bs is the same as the distribution of the random
variable Bt�s.

Exercise 5.4. Show that if {Bt, t � 0} is a Brownian motion, then E(Bt) = 0 for all t, and
Cov(Bs, Bt) = min{s, t}. Hint: Suppose that s < t and write BsBt = (BsBt � B

2
s ) + B

2
s .

The result of this exercise actually shows that Brownian motion is not a stationary process,
although it does have stationary increments.

Note. One of the problems with using either simple random walk or Brownian motion as a
model of an asset price is that the value of a real stock is never allowed to be negative—it
can equal 0, but can never be strictly less than 0. On the other hand, both a random walk
and a Brownian motion can be negative. Hence, neither serves as an adequate model for a
stock. Nonetheless, Brownian motion is the key ingredient for building a reasonable model
of a stock and the stochastic integral that we are about to construct is fundamental to the
analysis. At this point, we must be content with modelling (and betting on) fair games
whose values can be either positive or negative.
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If we let Ft = �(Bs, 0  s  t) denote the “information” contained in the Brownian motion
up to (and including) time t, then it easily follows that {Bt, t � 0} is a continuous-time
martingale with respect to the Brownian filtration {Ft, t � 0}. That is, suppose that s < t,
and so

E(Bt|Fs) = E(Bt � Bs +Bs|Fs) = E(Bt � Bs|Fs) + E(Bs|Fs) = E(Bt � Bs) + Bs = Bs

since the Brownian incrementBt�Bs has mean 0 and is independent of Fs, andBs is “known”
at time s (using the “taking out what is known” property of conditional expectation).

In analogy with simple random walk, we see that although {B2
t , t � 0} is not a martingale

with respect to {Ft, t � 0}, the process {B2
t � t, t � 0} is one.

Exercise 5.5. Let the process {Mt, t � 0} be defined by setting Mt = B

2
t � t. Show

that {Mt, t � 0} is a (continuous-time) martingale with respect to the Brownian filtration
{Ft, t � 0}.

Exercise 5.6. The same “trick” used to solve the previous exercise can also be used to show
that both {B3

t � 3tBt, t � 0} and {B4
t � 6tB2

t + 3t2, t � 0} are martingales with respect
to the Brownian filtration {Ft, t � 0}. Verify that these are both, in fact, martingales.
(Once we have learned Itô’s formula, we will discover a much easier way to “generate” such
martingales.)

Assuming that our fair game is modelled by a Brownian motion, we need to consider appro-
priate betting strategies. For now, we will allow only deterministic betting strategies that
do not “look into the future” and denote such a strategy by {g(t), t � 0}. This notation
might look a little strange, but it is meant to be suggestive for when we allow certain random
betting strategies. Hence, at this point, our betting strategy is simply a real-valued function
g : [0,1) ! R. Shortly, for technical reasons, we will see that it is necessary for g to be at
least bounded, piecewise continuous, and in L

2([0,1)). Recall that g 2 L

2([0,1)) means
that Z 1

0

g

2(s) ds < 1.

Thus, if we fix a time t > 0, then, in analogy with (5.1), our “fortune process” up to time t

is given by the (yet-to-be-defined) stochastic integral

It =

Z t

0

g(s) dBs. (5.2)

Our goal, now, is to try and define (5.2) in a reasonable way. A natural approach, therefore,
is to try and relate the stochastic integral (5.2) with the discrete stochastic integral (5.1)
constructed earlier. Since the discrete stochastic integral resembles a Riemann sum, that
seems like a good place to start.
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