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Prof. Michael Kozdron

Lecture #4, 5, 6: Discrete-Time Martingales

The concept of a martingale is fundamental to modern probability and is one of the key
tools needed to study mathematical finance. Although we saw the definition in STAT 351,
we are now going to need to be a little more careful than we were in that class. This will be
especially true when we study continuous-time martingales.

Definition 4.1. A sequence X0, X1, X2, . . . of random variables is said to be a martingale if

E(Xn+1|X0, X1, . . . , Xn) = Xn

for every n = 0, 1, 2, . . ..

Technically, we need all of the random variables to have finite expectation in order that
conditional expectations be defined. Furthermore, we will find it useful to introduce the
following notation. Let Fn = �(X0, X1, . . . , Xn) denote the information contained in the
sequence {X0, X1, . . . , Xn} up to (and including) time n. We then call the sequence {Fn, n =
0, 1, 2, . . .} = {F0,F1,F2, . . .} a filtration.

Definition 4.2. A sequence {Xn, n = 0, 1, 2 . . .} of random variables is said to be a martin-
gale with respect to the filtration {Fn, n = 0, 1, 2, . . .} if

(i) Xn 2 Fn for every n = 0, 1, 2, . . .,

(ii) E|Xn| < 1 for every n = 0, 1, 2, . . ., and

(iii) E(Xn+1|Fn) = Xn for every n = 0, 1, 2, . . ..

If Xn 2 Fn, then we often say that Xn is adapted. The intuitive idea is that if Xn is adapted,
then Xn is “known” at time n. In fact, you are already familiar with this notion from
STAT 351.

Remark. Suppose that n is fixed, and let Fn = �(X0, . . . , Xn). Clearly Fn�1 ⇢ Fn and so
X1 2 Fn, X2,2 Fn, . . . , Xn 2 Fn.

Moreover, the following theorem is extremely useful to know when working with martingales.

Theorem 4.3. Let X1, X2, . . . , Xn, Y be random variables, let g : Rn ! R be a function,
and let Fn = �(X1, . . . , Xn). It then follows that

• E(g(X1, X2, . . . , Xn)Y |Fn) = g(X1, X2, . . . , Xn)E(Y |Fn) (taking out what is known),

• E(Y |Fn) = E(Y ) if Y is independent of Fn, and

• E(E(Y |Fn)) = E(Y ).
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One useful fact about martingales is that they have stable expectation.

Theorem 4.4. If {Xn, n = 0, 1, 2, . . .} is a martingale, then E(Xn) = E(X0) for every
n = 0, 1, 2, . . ..

Proof. Since
E(Xn+1) = E(E(Xn+1|Fn)) = E(Xn),

we can iterate to conclude that

E(Xn+1) = E(Xn) = E(Xn�1) = · · · = E(X0)

as required.

Exercise 4.5. Suppose that {Xn, n = 1, 2, . . .} is a discrete-time stochastic process. Show
that {Xn, n = 1, 2, . . .} is a martingale with respect to the filtration {Fn, n = 0, 1, 2, . . .} if
and only if

(i) Xn 2 Fn for every n = 0, 1, 2, . . .,

(ii) E|Xn| < 1 for every n = 0, 1, 2, . . ., and

(iii) E(Xn|Fm) = Xm for every integer m with 0  m < n.

We are now going to study several examples of martingales. Most of them are variants of
simple random walk which we define in the next example.

Example 4.6. Suppose that Y1, Y2, . . . are independent, identically distributed random vari-
ables with P{Y1 = 1} = P{Y = �1} = 1/2. Let S0 = 0, and for n = 1, 2, . . ., define
Sn = Y1 + Y2 + · · · + Yn. The sequence {Sn, n = 0, 1, 2, . . .} is called a simple random walk
(starting at 0). Before we show that {Sn, n = 0, 1, 2, . . .} is a martingale, it will be useful to
calculate E(Sn), Var(Sn), and Cov(Sn, Sn+1). Observe that

(Y1 + Y2 + · · ·+ Yn)
2 = Y

2
1 + Y

2
2 + · · ·+ Y

2
n +

X

i 6=j

YiYj.

Since E(Y1) = 0 and Var(Y1) = E(Y 2
1 ) = 1, we find

E(Sn) = E(Y1 + Y2 + · · ·+ Yn) = E(Y1) + E(Y2) + · · ·+ E(Yn) = 0

and

Var(Sn) = E(S2
n) = E(Y1 + Y2 + · · ·+ Yn)

2 = E(Y 2
1 ) + E(Y 2

2 ) + · · ·+ E(Y 2
n ) +

X

i 6=j

E(YiYj)

= 1 + 1 + · · ·+ 1 + 0

= n

since E(YiYj) = E(Yi)E(Yj) when i 6= j because of the assumed independence of Y1, Y2, . . ..
Since Sn+1 = Sn + Yn+1 we see that

Cov(Sn, Sn+1) = Cov(Sn, Sn + Yn+1) = Cov(Sn, Sn) + Cov(Sn, Yn+1) = Var(Sn) + 0

using the fact that Yn+1 is independent of Sn. Furthermore, since Var(Sn) = n, we conclude
Cov(Sn, Sn+1) = n.
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Exercise 4.7. As a generalization of this covariance calculation, show that Cov(Sn, Sm) =
min{n,m}.

Example 4.6 (continued). We now show that the simple random walk {Sn, n =
0, 1, 2, . . .} is a martingale. This also illustrates the usefulness of the Fn notation since

Fn = �(S0, S1, . . . , Sn) = �(Y1, . . . , Yn).

Notice that
E(Sn+1|Fn) = E(Yn+1 + Sn|Fn) = E(Yn+1|Fn) + E(Sn|Fn).

Since Yn+1 is independent of Fn we conclude that

E(Yn+1|Fn) = E(Yn+1) = 0.

If we condition on Fn, then Sn is known, and so

E(Sn|Fn) = Sn.

Combined we conclude

E(Sn+1|Fn) = E(Yn+1|Fn) + E(Sn|Fn) = 0 + Sn = Sn

which proves that {Sn, n = 0, 1, 2, . . .} is a martingale.

Example 4.6 (continued). Next we show that {S2
n�n, n = 0, 1, 2, . . .} is also a martingale.

Let Mn = S

2
n � n. We must show that E(Mn+1|Fn) = Mn since

Fn = �(M0,M1, . . . ,Mn) = �(S0, S1, . . . , Sn).

Notice that

E(S2
n+1|Fn) = E((Yn+1 + Sn)

2|Fn) = E(Y 2
n+1|Fn) + 2E(Yn+1Sn|Fn) + E(S2

n|Fn).

However,

• E(Y 2
n+1|Fn) = E(Y 2

n+1) = 1,

• E(Yn+1Sn|Fn) = SnE(Yn+1|Fn) = SnE(Yn+1) = 0, and

• E(S2
n|Fn) = S

2
n

from which we conclude that
E(S2

n+1|Fn) = S

2
n + 1.

Therefore,

E(Mn+1|Fn) = E(S2
n+1 � (n+ 1)|Fn) = E(S2

n+1|Fn)� (n+ 1) = S

2
n + 1� (n+ 1)

= S

2
n � n

= Mn

and so we conclude that {Mn, n = 0, 1, 2, . . .} = {S2
n � n, n = 0, 1, 2, . . .} is a martingale.
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Example 4.6 (continued). We are now going to construct one more martingale related
to simple random walk. Suppose that ✓ 2 R and let

Zn = (sech ✓)ne✓Sn

, n = 0, 1, 2, . . . ,

where the hyperbolic secant is defined as

sech ✓ =
2

e

✓ + e

�✓
.

We will show that {Zn, n = 0, 1, 2, . . .} is a martingale. Thus, we must verify that

E(Zn+1|Fn) = Zn

since
Fn = �(Z0, Z1, . . . , Zn) = �(S0, S1, . . . , Sn).

Notice that Sn+1 = Sn + Yn+1 which implies

Zn+1 = (sech ✓)n+1
e

✓S
n+1 = (sech ✓)n+1

e

✓(S
n

+Y
n+1) = (sech ✓)ne✓Sn · (sech ✓)e✓Yn+1

= Zn · (sech ✓)e✓Yn+1
.

Therefore,

E(Zn+1|Fn) = E(Zn · (sech ✓)e✓Yn+1 |Fn) = ZnE((sech ✓)e✓Yn+1 |Fn) = ZnE((sech ✓)e✓Yn+1)

where the second equality follows by “taking out what is known” and the third equality
follows by independence. The final step is to compute E((sech ✓)e✓Yn+1). Note that

E(e✓Yn+1) = e

✓·1 · 1
2
+ e

✓·�1 · 1
2
=

e

✓ + e

�✓

2
=

1

sech ✓

and so

E((sech ✓)e✓Yn+1) = (sech ✓)E(e✓Yn+1) = (sech ✓) · 1

sech ✓
= 1.

In other words, we have shown that

E(Zn+1|Fn) = Zn

which implies that {Zn, n = 0, 1, 2 . . .} is a martingale.

The following two examples give more martingales derived from simple random walk.

Example 4.8. As in the previous example, let Y1, Y2, . . . be independent and identically
distributed random variables with P{Y1 = 1} = P{Y1 = �1} = 1

2 , set S0 = 0, and for
n = 1, 2, 3, . . ., define the random variable Sn by Sn = Y1+· · ·+Yn so that {Sn, n = 0, 1, 2, . . .}
is a simple random walk starting at 0. Define the process {Mn, n = 0, 1, 2, . . .} by setting

Mn = S

3
n � 3nSn.

Show that {Mn, n = 0, 1, 2, . . .} is a martingale.
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Solution. If Mn = S

3
n � 3nSn, then

Mn+1 = S

3
n+1 � 3(n+ 1)Sn+1

= (Sn + Yn+1)
3 � 3(n+ 1)(Sn + Yn+1)

= S

3
n + 3S2

nYn+1 + 3SnY
2
n+1 + Y

3
n+1 � 3(n+ 1)Sn � 3(n+ 1)Yn+1

= Mn + 3Sn(Y
2
n+1 � 1) + 3S2

nYn+1 � 3(n+ 1)Yn+1 + Y

3
n+1.

Thus, we see that we will be able to conclude that {Mn, n = 0, 1, . . .} is a martingale if we
can show that

E
�
3Sn(Y

2
n+1 � 1) + 3S2

nYn+1 � 3(n+ 1)Yn+1 + Y

3
n+1|Fn

�
= 0.

Now

3E(Sn(Y
2
n+1 � 1)|Fn) = 3SnE(Y 2

n+1 � 1) and 3E(S2
nYn+1|Fn) = 3S2

nE(Yn+1)

by “taking out what is known,” and using the fact that Yn+1 and Fn are independent.
Furthermore,

3(n+ 1)E(Yn+1|Fn) = 3(n+ 1)E(Yn+1) and E(Y 3
n+1|Fn) = E(Y 3

n+1)

using the fact that Yn+1 and Fn are independent. Since E(Yn+1) = 0, E(Y 2
n+1) = 1, and

E(Y 3
n+1) = 0, we see that

E(Mn+1|Fn) = Mn + 3SnE(Y 2
n+1 � 1) + 3S2

nE(Yn+1)� 3(n+ 1)E(Yn+1) + E(Y 3
n+1)

= Mn + 3Sn · (1� 1) + 3S2
n · 0� 3(n+ 1) · 0 + 0

= Mn

which proves that {Mn, n = 0, 1, 2, . . .} is, in fact, a martingale.

The following example is the most important discrete-time martingale calculation that you
will do. The process {Ij, j = 0, 1, 2, . . .} defined below is an example of a discrete stochastic
integral. In fact, stochastic integration is one of the greatest achievements of 20th century
probability and, as we will see, is fundamental to the mathematical theory of finance and
option pricing.

Example 4.9. As in the previous example, let Y1, Y2, . . . be independent and identically
distributed random variables with P{Y1 = 1} = P{Y1 = �1} = 1

2 , set S0 = 0, and for
n = 1, 2, 3, . . ., define the random variable Sn by Sn = Y1+· · ·+Yn so that {Sn, n = 0, 1, 2, . . .}
is a simple random walk starting at 0. Now suppose that I0 = 0 and for j = 1, 2, . . . define
Ij to be

Ij =
jX

n=1

Sn�1(Sn � Sn�1).

Prove that {Ij, j = 0, 1, 2, . . .} is a martingale.
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Solution. If

Ij =
jX

n=1

Sn�1(Sn � Sn�1).

then
Ij+1 = Ij + Sj(Sj+1 � Sj).

Therefore,

E(Ij+1|Fj) = E(Ij + Sj(Sj+1 � Sj)|Fj) = E(Ij|Fj) + E(Sj(Sj+1 � Sj)|Fj)

= Ij + SjE(Sj+1|Fj)� S

2
j

where we have “taken out what is known” three times. Furthermore, since {Sj, j = 0, 1, . . .}
is a martingale,

E(Sj+1|Fj) = Sj.

Combining everything gives

E(Ij+1|Fj) = Ij + SjE(Sj+1|Fj)� S

2
j = Ij + S

2
j � S

2
j = Ij

which proves that {Ij, j = 0, 1, 2, . . .} is, in fact, a martingale.

Exercise 4.10. Suppose that {Ij, j = 0, 1, 2, . . .} is defined as in the previous example.
Show that

Var(Ij) =
j(j � 1)

2
for all j = 0, 1, 2, . . ..

This next example gives several martingales derived from biased random walk.

Example 4.11. Suppose that Y1, Y2, . . . are independent and identically distributed random
variables with P{Y1 = 1} = p, P{Y1 = �1} = 1 � p for some 0 < p < 1/2. Let Sn =
Y1 + · · ·+ Yn denote their partial sums so that {Sn, n = 0, 1, 2, . . .} is a biased random walk.
(Note that {Sn, n = 0, 1, 2, . . .} is no longer a simple random walk.)

(a) Show that Xn = Sn � n(2p� 1) is a martingale.

(b) Show that Mn = X

2
n � 4np(1� p) = [Sn � n(2p� 1)]2 � 4np(1� p) is a martingale.

(c) Show that Zn =
⇣

1�p
p

⌘S
n

is a martingale.

Solution. We begin by noting that

Fn = �(Y1, . . . , Yn) = �(S0, . . . , Sn) = �(X0, . . . , Xn) = �(M0, . . . ,Mn) = �(Z0, . . . , Zn).

(a) The first step is to calculate E(Y1). That is,

E(Y1) = 1 ·P{Y = 1}+ (�1) ·P{Y = �1} = p� (1� p) = 2p� 1.
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Since Sn+1 = Sn + Yn+1, we see that

E(Sn+1|Fn) = E(Sn + Yn+1|Fn) = E(Sn|Fn) + E(Yn+1|Fn)

= Sn + E(Yn+1)

= Sn + 2p� 1

by “taking out what is known” and using the fact that Yn+1 and Fn are independent. This
implies that

E(Xn+1|Fn) = E(Sn+1 � (n+ 1)(2p� 1)|Fn) = E(Sn+1|Fn)� (n+ 1)(2p� 1)

= Sn + 2p� 1� (n+ 1)(2p� 1)

= Sn � n(2p� 1)

= Xn,

and so we conclude that {Xn, n = 1, 2, . . .} is, in fact, a martingale.

(b) Notice that we can write Xn+1 as

Xn+1 = Sn+1 � (n+ 1)(2p� 1) = Sn + Yn+1 � n(2p� 1)� (2p� 1)

= Xn + Yn+1 � (2p� 1)

and so

X

2
n+1 = (Xn + Yn+1)

2 + (2p� 1)2 � 2(2p� 1)(Xn + Yn+1)

= X

2
n + Y

2
n+1 + 2XnYn+1 + (2p� 1)2 � 2(2p� 1)(Xn + Yn+1).

Thus,

E(X2
n+1|Fn)

= E(X2
n|Fn) + E(Y 2

n+1|Fn) + 2E(XnYn+1|Fn) + (2p� 1)2 � 2(2p� 1)E(Xn + Yn+1|Fn)

= X

2
n + E(Yn+1)

2 + 2XnE(Yn+1) + (2p� 1)2 � 2(2p� 1)(Xn + E(Yn+1))

= X

2
n + 1 + 2(2p� 1)Xn + (2p� 1)2 � 2(2p� 1)(Xn + (2p� 1))

= X

2
n + 1 + 2(2p� 1)Xn + (2p� 1)2 � 2(2p� 1)Xn � 2(2p� 1)2

= X

2
n + 1� (2p� 1)2,

by again “taking out what is known” and using the fact that Yn+1 and Fn are independent.
Hence, we find

E(Mn+1|Fn) = E(X2
n+1|Fn)� 4(n+ 1)p(1� p)

= X

2
n + 1� (2p� 1)2 � 4(n+ 1)p(1� p)

= X

2
n + 1� (4p2 � 4p+ 1)� 4np(1� p)� 4p(1� p)

= X

2
n + 1� 4p2 + 4p� 1� 4np(1� p)� 4p+ 4p2

= X

2
n � 4np(1� p)

= Mn
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so that {Mn, n = 1, 2, . . .} is, in fact, a martingale.

(c) Notice that

Zn+1 =

✓
1� p

p

◆S
n+1

=

✓
1� p

p

◆S
n

+Y
n+1

=

✓
1� p

p

◆S
n

✓
1� p

p

◆Y
n+1

= Zn

✓
1� p

p

◆Y
n+1

.

Therefore,

E(Zn+1|Fn) = E
 
Zn

✓
1� p

p

◆Y
n+1
����Fn

!
= ZnE

 ✓
1� p

p

◆Y
n+1
����Fn

!

= ZnE
 ✓

1� p

p

◆Y
n+1
!

where the second equality follows from “taking out what is known” and the third equality
follows from the fact that Yn+1 and Fn are independent. We now compute

E
 ✓

1� p

p

◆Y
n+1
!

= p

✓
1� p

p

◆1

+ (1� p)

✓
1� p

p

◆�1

= (1� p) + p = 1

and so we conclude
E(Zn+1|Fn) = Zn.

Hence, {Zn, n = 0, 1, 2, . . .} is, in fact, a martingale.

We now conclude this section with one final example. Although it is unrelated to simple
random walk, it is an easy martingale calculation and is therefore worth including. In fact,
it could be considered as a generalization of (c) of the previous example.

Example 4.12. Suppose that Y1, Y2, . . . are independent and identically distributed random
variables with E(Y1) = 1. Suppose further that X0 = Y0 = 1 and for n = 1, 2, . . ., let

Xn = Y1 · Y2 · · ·Yn =
nY

j=1

Yj.

Verify that {Xn, n = 0, 1, 2, . . .} is a martingale with respect to {Fn = �(Y0, . . . , Yn), n =
0, 1, 2, . . .}.

Solution. We find

E(Xn+1|Fn) = E(Xn · Yn+1|Fn)

= XnE(Yn+1|Fn) (by taking out what is known)

= XnE(Yn+1) (since Yn+1 is independent of Fn)

= Xn · 1
= Xn

and so {Xn, n = 0, 1, 2, . . .} is, in fact, a martingale.
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