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Lecture #35: The Characteristic Function for Heston’s Model

As we saw last lecture, it is sometimes possible to determine the characteristic function
of a random variable defined via a stochastic di↵erential equation without actually solving
the SDE. The computation involves the Feynman-Kac representation theorem, but it does
require the solution of a partial di↵erential equation. In certain cases where an explicit
solution does not exist for the SDE, computing the characteristic function might still be
possible as long as the resulting PDE is solvable.
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We will now determine the characteristic function ofX
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for any T � 0. The multidimensional
version of Itô’s formula (Theorem 20.4) implies that

df(t,X
t

, v

t

) = ḟ(t,X
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where the di↵erential operator A is defined as
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If we now let u(x) = e

i✓x, then the (multidimensional form of the) Feynman-Kac represen-
tation theorem implies
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is the unique bounded solution of the partial di↵erential equation

(Af)(t, x, y) = 0, 0  t  T, x 2 R, y 2 R, (22.1)

subject to the terminal condition
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Guided by the form of the terminal condition and by our experience with the Ornstein-
Uhlenbeck characteristic function, we guess that f(t, x, y) can be written as

f(t, x, y) = exp{↵(t)y + �(t)} exp{i✓x} (22.2)

for some functions ↵(t) and �(t) of t only satisfying ↵(T ) = 0 and �(T ) = 0. Di↵erentiating
we find
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so that substituting into the explicit form of (Af)(t, x, y) = 0 and factoring out the common
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Since this equation must be true for all 0  t  T , x 2 R, and y 2 R, the only way that is
possible is if the coe�cient of y is zero and the constant term is 0. Thus, we must have
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The first equation in (22.3) involves ↵(t) only and is of the form
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This ordinary di↵erential equation can be solved by integration; see Exercise 22.1 below.
The solution is given by
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and G is an arbitrary constant. The terminal condition ↵(T ) = 0 implies

0 = D + E tan(FT +G) so that G = arctan

✓

�D

E

◆

� FT

which gives

↵(t) = D + E tan

✓

arctan

✓

�D

E

◆

� F (T � t)

◆

. (22.6)

Exercise 22.1. Suppose that a, b, and c are non-zero real constants. Compute
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Hint: Complete the square in the denominator. The resulting function is an antiderivative
of an arctangent function.

In order to simplify the expression for ↵(t) given by (22.6) above, we begin by noting that
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Using the sum of angles identity for cosine therefore gives
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Similarly, the sum of angles identity for sine yields
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Writing tan(z) = sin(z)

cos(z)

and using (22.8) and (22.9) implies
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The next step is to substitute back for D, E, and F in terms of the original parameters. It
turns out, however, that it is useful to write them in terms of
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Having determined ↵(t), we can now consider the second equation in (22.3) involving �

0(t).
It is easier, however, to manipulate this expression using ↵(t) in the form (22.6). Thus, the
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As in the calculation of ↵(t), we can simplify this further using (22.8) so that
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Substituting the expressions given by (22.11) for D, E, and F in terms of the original
parameters into (22.13) gives
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As in the calculation of ↵(t), the final simplification is to note that cos(�iz) = cosh(z) and
sin(�iz) = �i sinh(z) so that
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We can now substitute our expression for exp{↵(t)y} given by (22.12) and our expression
for exp{�(t)} given by (22.14) into our guess for f(t, x, y) given by (22.2) to conclude
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and we are done!

22–6


