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Prof. Michael Kozdron

Lecture #30: Implied Volatility

Recall that if V (0, S
0

) denotes the fair price (at time 0) of a European call option with strike
price E and expiry date T , then the Black-Scholes option valuation formula is
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Suppose that at time 0 a first investor buys a European call option on the stock having
initial price S

0

with strike price E and expiry date T . Of course, the fair price for the first
investor to pay is V (0, S

0

).

Suppose that some time later, say at time t, a second investor wants to buy a European call
option on the same stock with the same strike price E and the same expiry date T . What
is the fair price for this second investor to pay at time t?

Since it is now time t, the value of the underlying stock, namely S

t

, is known. The expiry
date T is time T � t away. Thus, we simply re-scale our original Black-Scholes solution so
that t is the new time 0, the new initial price of the stock is S

t

, and T � t is the new expiry
date. This implies that the fair price (at time t) of a European call option with strike price
E and expiry date T is given by the Black-Scholes option valuation formula
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In fact, the rigorous justification for this is exactly the same as in (16.4) except now we view
M

t

= W (t, S
t

) as non-random since S

t

, the stock price at time t, is known at time t. Note
that the formula for V (t, S

t

) holds for 0  t  T . In particular, for t = 0 we recover our
original result.
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Remark. Given the general Black-Scholes formula V (t, S
t

), 0  t  T , we can define ⇥ as
the derivative of V with respect to t. (In Lecture #29, we defined ⇥ as the derivative of V
with respect to the expiry date T .) With this revised definition, we compute
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as in (10.5) of [11]. Note that there is a sign di↵erence between this result and (18.3). All
of the other Greeks, namely delta, gamma, rho, and vega, are the same as in Lecture #29
except that T is replaced with T � t.

The practical advantage of the Black-Scholes formula V (t, S
t

) is that it allows for the fast
and easy calculation of option prices. It is worth noting, however, that “exact” calculations
are not actually possible since the formula is given in terms of �, the normal cumulative
distribution function. In order to “evaluate” � (d

1

) or � (d
2

) one must resort to using a
computer (or table of normal values). Computationally, it is quite easy to evaluate � to
many decimal places accuracy; and so this is the reason that we say the Black-Scholes
formulation gives an exact formula. (In fact, programs like MATLAB or R can easily give
values of � accurate to 10 decimal places.)

However, the limitations of the Black-Scholes model are numerous. Assumptions such as the
asset price process following a geometric Brownian motion (so that an asset price at a fixed
time has a lognormal distribution), or that the asset’s volatility is constant, are not justified
by actual market data.

As such, one of the goals of modern finance is to develop more sophisticated models for
the asset price process, and to then develop the necessary stochastic calculus to produce a
“solution” to the pricing problem. Unfortunately, there is no other model that produces as
compact a solution as Black-Scholes. This means that the “solution” to any other model
involves numerical analysis—and often quite involved analysis at that.

Suppose, for the moment, that we assume that the Black-Scholes model is valid. In particular,
assume that the stock price {S

t

, t � 0} follows geometric Brownian motion. The fair price
V (t, S

t

) to pay at time t depends on the parameters S
t

, E, T � t, r, and �

2. Of these, only
the asset volatility � cannot be directly observed.

There are two distinct approaches to extracting a value of � from market data. The first is
known as implied volatility and is obtained by using a quoted option value to recover �. The
second is known as historical volatility and is essentially maximum likelihood estimation of
the parameter �.

We will discuss only implied volatility. For ease, we will focus on the time t = 0 case.
Suppose that S

0

, E, T , and r are all known, and consider V (0, S
0

). Since we are assuming
that only � is unknown, we will emphasis this by writing V (�).

Thus, if we have a quoted value of the option price, say V

⇤, then we want to solve the
equation V (�) = V

⇤ for �.

We will now show there is a unique solution to this equation which will be denoted by �

⇤ so
that V (�⇤) = V

⇤.
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To begin, note that we are only interested in positive volatilities so that � 2 [0,1). Fur-
thermore, V (�) is continuous on [0,1) with
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Recall that from Lecture #29 that
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we immediately conclude that V 0(�) > 0.

The fact that V (�) is continuous on [0,1) with V

0(�) > 0 implies that V (�) is strictly
increasing on [0,1). Thus, we see that V (�) = V

⇤ has a solution if and only if
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and that if a solution exists, then it must be unique. The no arbitrage assumption (i.e., the
put-call parity) implies that the condition (19.2) always holds.

We now calculate
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which shows that the only inflection point of V (�) on [0,1) is at
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Notice that we can write

V
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T
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which implies that V (�) is convex (i.e., concave up) for � < �̂ and concave (i.e., concave
down) for � > �̂.

Exercise 19.1. Verify (19.1), (19.2), (19.3), (19.4), and (19.5).

The consequence of all of this is that Newton’s method will be globally convergent for a
suitably chosen initial value. Recall that Newton’s method tells us that in order to solve the
equation F (x) = 0, we consider the sequence of iterates x
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then F (x⇤) = 0. Of course, there are assumptions needed to ensure that Newton’s method
converges and produces the correct solution.

If we now consider F (�) = V (�) � V

⇤, then we have already shown that the conditions
needed to guarantee that Newton’s method converges have been satisfied.

It can also be shown that

0 <

�

n+1
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⇤

�

n
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⇤ < 1

for all n which implies that the error in the approximation is strictly decreasing as n increases.
Thus, if we choose �

0

= �̂, then the error must always converge to 0. Moreover, it can
be shown that the convergence is quadratic. Thus, choosing �

0

= �̂ is a foolproof (and
deterministic) way of starting Newton’s method. We can then stop iterating when our error
is within some pre-specified tolerance, say < 10�8.

Remark. Computing implied volatility using Newton’s method is rather easy to implement
in MATLAB. See, for instance, the program ch14.m from Higham [11].

Consider obtaining data that reports the option price V ⇤ for a variety of values of the strike
price E while at the same time holds r, S

0

, and T fixed. An example of such data is presented
in Section 14.5 of [11]. If the Black-Scholes formula were valid, then the volatility would be
the same for each strike price. That is, the graph of strike price vs. implied volatility would
be a horizontal line passing through � = �

⇤.

However, in this example, and in numerous other examples, the implied volatility curve
appears to bend in the shape of either a smile or a frown.

Remark. More sophisticated analyses of implied volatility involve data that reports the
option price V

⇤ for a variety of values of the strike price E and expiry dates T while at
the same time holding r and S

0

fixed. This produces a graph of strike price vs. expiry
date vs. implied volatility, and the result is an implied volatility surface. The functional
data analysis needed to in this case requires a number of statistical tools including principal
components analysis. If the Black-Scholes formula were valid, then the resulting implied
volatility surface would be a plane. Market data, however, typically results in bowl-shaped
or hat-shaped surfaces. For details, see [23] which is also freely available online.

This implies, of course, that the Black-Scholes formula is not a perfect description of the
option values that arise in practice. Many attempts have been made to “fix” this by consid-
ering stock price models that do not have constant volatility. We will investigate some such
models next lecture.
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