
Statistics 441 (Fall 2014) September 10, 2014
Prof. Michael Kozdron

Lecture #3: Normal and Lognormal Random Variables

The purpose of this lecture is to remind you of some of the key properties of normal and
lognormal random variables which are basic objects in the mathematical theory of finance.
(Of course, you already know of the ubiquity of the normal distribution from your elementary
probability classes since it arises in the central limit theorem, and if you have studied any
actuarial science you already realize how important lognormal random variables are.)

Recall that a continuous random variable Z is said to have a normal distribution with mean
0 and variance 1 if the density function of Z is

fZ(z) =
1p
2⇡

e

� z

2

2
, �1 < z < 1.

If Z has such a distribution, we write Z ⇠ N (0, 1).

Exercise 3.1. Show directly that if Z ⇠ N (0, 1), then E(Z) = 0 and Var(Z) = 1. That is,
calculate

1p
2⇡

Z 1

�1
ze

� z

2

2 dz and
1p
2⇡

Z 1

�1
z

2
e

� z

2

2 dz

using only results from elementary calculus. This calculation justifies the use of the “mean
0 and variance 1” phrase in the definition above.

Let µ 2 R and let � > 0. We say that a continuous random variable X has a normal
distribution with mean µ and variance �

2 if the density function of X is

fX(x) =
1

�

p
2⇡

e

� (x�µ)2

2�2
, �1 < x < 1.

If X has such a distribution, we write X ⇠ N (µ, �2).

Shortly, you will be asked to prove the following result which establishes the relationship
between the random variables Z ⇠ N (0, 1) and X ⇠ N (µ, �2).

Theorem 3.2. Suppose that Z ⇠ N (0, 1), and let µ 2 R, � > 0 be constants. If the random
variable X is defined by X = �Z + µ, then X ⇠ N (µ, �2). Conversely, if X ⇠ N (µ, �2),
and the random variable Z is defined by

Z =
X � µ

�

,

then Z ⇠ N (0, 1).

Let

�(z) =

Z z

�1

1p
2⇡

e

�x

2

2 dx

denote the standard normal cumulative distribution function. That is, �(z) = P{Z  z} =
FZ(z) is the distribution function of a random variable Z ⇠ N (0, 1).
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Remark. Higham [11] writesN instead of � for the standard normal cumulative distribution
function. The notation � is far more common in the literature, and so we prefer to use it
instead of N .

Exercise 3.3. Show that 1� �(z) = �(�z).

Exercise 3.4. Show that if X ⇠ N (µ, �2), then the distribution function of X is given by

FX(x) = �

✓
x� µ

�

◆
.

Exercise 3.5. Use the result of Exercise 3.4 to complete the proof of Theorem 3.2.

The next two exercises are extremely important for us. In fact, these exercises ask you to
prove special cases of the Black-Scholes formula.

Notation. We write x

+ = max{0, x} to denote the positive part of x.

Exercise 3.6. Suppose that Z ⇠ N (0, 1), and let c > 0 be a constant. Compute

E[ (eZ � c)+ ].

You will need to express your answer in terms of �.

Answer. e1/2 �(1� log c)� c�(� log c)

Exercise 3.7. Suppose that Z ⇠ N (0, 1), and let a > 0, b > 0, and c > 0 be constants.
Compute

E[ (aebZ � c)+ ].

You will need to express your answer in terms of �.

Answer. aeb
2/2 �

�
b+ 1

b log
a
c

�
� c�

�
1
b log

a
c

�

Recall that the characteristic function of a random variable X is the function 'X : R ! C
given by 'X(t) = E(eitX).

Exercise 3.8. Show that if Z ⇠ N (0, 1), then the characteristic function of Z is

'Z(t) = exp

⇢
�t

2

2

�
.

Exercise 3.9. Show that if X ⇠ N (µ, �2), then the characteristic function of X is

'X(t) = exp

⇢
iµt� �

2
t

2

2

�
.

The importance of characteristic functions is that they completely characterize the distri-
bution of a random variable since the characteristic function always exists (unlike moment
generating functions which do not always exist).
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Theorem 3.10. Suppose that X and Y are random variables. The characteristic functions
'X and 'Y are equal if and only if X and Y are equal in distribution (that is, FX = FY ).

Proof. For a proof, see Theorem 4.1.2 on page 160 of [9].

Exercise 3.11. One consequence of this theorem is that it allows for an alternative solution
to Exercise 3.5. That is, use characteristic functions to complete the proof of Theorem 3.2.

We will have occasion to analyze sums of normal random variables. The purpose of the next
several exercises and results is to collect all of the facts that we will need. The first exercise
shows that a linear combination of independent normals is again normal.

Exercise 3.12. Suppose that X1 ⇠ N (µ1, �
2
1) and X2 ⇠ N (µ2, �

2
2) are independent. Show

that for any a, b 2 R,

aX1 + bX2 ⇠ N
�
aµ1 + bµ2, a

2
�

2
1 + b

2
�

2
2

�
.

Of course, whenever two random variables are independent, they are necessarily uncorrelated.
However, the converse is not true in general, even in the case of normal random variables. As
the following example shows, uncorrelated normal random variables need not be independent.

Example 3.13. Suppose that X1 ⇠ N (0, 1) and suppose further that Y is independent
of X1 with P{Y = 1} = P{Y = �1} = 1/2. If we set X2 = Y X1, then it follows that
X2 ⇠ N (0, 1). (Verify this fact.) Furthermore, X1 and X2 are uncorrelated since

Cov(X1, X2) = E(X1X2) = E(X2
1Y ) = E(X2

1 )E(Y ) = 1 · 0 = 0

using the fact that X1 and Y are independent. However, X1 and X2 are not independent
since

P{X1 � 1, X2 � 1} = P{X1 � 1, Y = 1} = P{X1 � 1}P{Y = 1} =
1

2
P{X1 � 1}

whereas
P{X1 � 1}P{X2 � 1} = [P{X1 � 1}]2.

Since P{X1 � 1} does not equal either 0 or 1/2 (it actually equals
.

= 0.1587) we see that

1

2
P{X1 � 1} 6= [P{X1 � 1}]2.

An extension of this same example also shows that the sum of uncorrelated normal random
variables need not be normal.

Example 3.13 (continued). We will now show that X1+X2 is not normally distributed.
If X1 + X2 were normally distributed, then it would necessarily be the case that for any
x 2 R, we would have P{X1 +X2 = x} = 0. Indeed, this is true for any continuous random
variable. But we see that P{X1 +X2 = 0} = P{Y = �1} = 1/2 which shows that X1 +X2

cannot be a normal random variable (let alone a continuous random variable).

However, if we have a bivariate normal random vector X = (X1, X2)0, then independence of
the components and no correlation between them are equivalent.
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Theorem 3.14. Suppose that X = (X1, X2)0 has a bivariate normal distribution so that the
components of X, namely X1 and X2, are each normally distributed. Furthermore, X1 and
X2 are uncorrelated if and only if they are independent.

Proof. For a proof, see Theorem V.7.1 on page 133 of Gut [8].

Two important variations on the previous results are worth mentioning.

Theorem 3.15 (Cramér). If X and Y are independent random variables such that X + Y

is normally distributed, then X and Y themselves are each normally distributed.

Proof. For a proof of this result, see Theorem 19 on page 53 of [6].

In the special case when X and Y are also identically distributed, Cramér’s theorem is easy
to prove.

Exercise 3.16. Suppose that X and Y are independent and identically distributed random
variables such that X + Y ⇠ N (2µ, 2�2). Prove that X ⇠ N (µ, �2) and Y ⇠ N (µ, �2).

Example 3.13 showed that uncorrelated normal random variables need not be independent
and need not have a normal sum. However, if uncorrelated normal random variables are
known to have a normal sum, then it must be the case that they are independent.

Theorem 3.17. If X1 ⇠ N (µ1, �
2
1) and X2 ⇠ N (µ2, �

2
2) are normally distributed random

variables with Cov(X1, X2) = 0, and if X1 +X2 ⇠ N (µ1 + µ2, �
2
1 + �

2
2), then X1 and X2 are

independent.

Proof. In order to prove that X1 and X2 are independent, it is su�cient to prove that the
characteristic function of X1 + X2 equals the product of the characteristic functions of X1

and X2. Since X1 +X2 ⇠ N (µ1 + µ2, �
2
1 + �

2
2) we see using Exercise 3.9 that

'X1+X2(t) = exp

⇢
i(µ1 + µ2)t�

(�2
1 + �

2
2)t

2

2

�
.

Furthermore, since X1 ⇠ N (µ1, �
2
1) and X2 ⇠ N (µ2, �

2
2) we see that

'X1(t)'X2(t) = exp

⇢
iµ1t�

�

2
1t

2

2

�
· exp

⇢
iµ2t�

�

2
2t

2

2

�
= exp

⇢
i(µ1 + µ2)t�

(�2
1 + �

2
2)t

2

2

�
.

In other words,
'X1(t)'X2(t) = 'X1+X2(t)

which establishes the result.

Remark. Actually, the assumption that Cov(X1, X2) = 0 is unnecessary in the previous
theorem. The same proof shows that if X1 ⇠ N (µ1, �

2
1) and X2 ⇠ N (µ2, �

2
2) are normally

distributed random variables, and if X1 + X2 ⇠ N (µ1 + µ2, �
2
1 + �

2
2), then X1 and X2 are

independent. It is now a consequence that Cov(X1, X2) = 0.
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A variation of the previous result can be proved simply by equating variances.

Exercise 3.18. If X1 ⇠ N (µ1, �
2
1) and X2 ⇠ N (µ2, �

2
2) are normally distributed random

variables, and if X1 + X2 ⇠ N (µ1 + µ2, �
2
1 + �

2
2 + 2⇢�1�2), then Cov(X1, X2) = ⇢�1�2 and

Corr(X1, X2) = ⇢.

Our final result gives conditions under which normality is preserved for limits in distribution.
Before stating this theorem, we need to recall the definition of convergence in distribution.

Definition 3.19. Suppose that X1, X2, . . . and X are random variables with distribution
functions Fn, n = 1, 2, . . ., and F , respectively. We say that Xn converges in distribution to
X as n ! 1 if

lim
n!1

Fn(x) = F (x)

for all x 2 R at which F is continuous.

The relationship between convergence in distribution and characteristic functions is ex-
tremely important for us.

Theorem 3.20. Suppose that X1, X2, . . . are random variables with characteristic functions
'X

n

, n = 1, 2, . . .. It then follows that 'X
n

(t) ! 'X(t) as n ! 1 for all t 2 R if and only
if Xn converges in distribution to X.

Proof. For a proof of this result, see Theorem 5.9.1 on page 238 of [9].

It is worth noting that in order to apply the result of the previous theorem we must know
a priori what the limiting random variable X is. In the case when we only know that the
characteristic functions converge to something, we must be a bit more careful.

Theorem 3.21. Suppose that X1, X2, . . . are random variables with characteristic functions
'X

n

, n = 1, 2, . . .. If 'X
n

(t) converges to some function '(t) as n ! 1 for all t 2 R and
'(t) is continuous at 0, then there exists a random variable X with characteristic function
' such that Xn converges in distribution to X.

Proof. For a proof of this result, see Theorem 5.9.2 on page 238 of [9].

Remark. The statement of the central limit theorem is really a statement about convergence
in distribution, and its proof follows after a careful analysis of characteristic functions from
Theorems 3.10 and 3.21.

We are now ready to prove that normality is preserved under convergence in distribution.
The proof uses a result known as Slutsky’s theorem, and so we will state and prove this first.

Theorem 3.22 (Slutsky). Suppose that the random variables Xn, n = 1, 2, . . ., converge in
distribution to X and that the sequence of real numbers an, n = 1, 2, . . ., converges to the
finite real number a. It then follows that Xn+an converges in distribution to X+a and that
anXn converges in distribution to aX.
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Proof. We begin by observing that for " > 0 fixed, we have

P{Xn + an  x} = P{Xn + an  x, |an � a| < "}+P{Xn + an  x, |an � a| > "}
 P{Xn + an  x, |an � a| < "}+P{|an � a| > "}
 P{Xn  x� a+ "}+P{|an � a| > "}

That is,
FX

n

+a
n

(x)  FX
n

(x� a+ ") +P{|an � a| > "}.

Since an ! a as n ! 1 we see that P{|an � a| > "} ! 0 as n ! 1 and so

lim sup
n!1

FX
n

+a
n

(x)  FX(x� a+ ")

for all points x� a+ " at which F is continuous. Similarly,

lim inf
n!1

FX
n

+a
n

(x) � FX(x� a� ")

for all points x� a� " at which F is continuous. Since " > 0 can be made arbitrarily small
and since FX has at most countably many points of discontinuity, we conclude that

lim
n!1

FX
n

+a
n

(x) = FX(x� a) = FX+a(x)

for all x 2 R at which FX+a is continuous. The proof that anXn converges in distribution to
aX is similar.

Exercise 3.23. Complete the details to show that anXn converges in distribution to aX.

Theorem 3.24. Suppose that X1, X2, . . . is a sequence of random variables with Xi ⇠
N (µi, �

2
i ), i = 1, 2, . . .. If the limits

lim
n!1

µn and lim
n!1

�

2
n

each exist and are finite, then the sequence {Xn, n = 0, 1, 2, . . .} converges in distribution to
a random variable X. Furthermore, X ⇠ N (µ, �2) where

µ = lim
n!1

µn and �

2 = lim
n!1

�

2
n.

Proof. For each n, let

Zn =
Xn � µn

�n

so that Zn ⇠ N (0, 1) by Theorem 3.2. Clearly, Zn converges in distribution to some random
variable Z with Z ⇠ N (0, 1). By Slutsky’s theorem, since Zn converges in distribution to
Z, it follows that Xn = �nZn + µn converges in distribution to �Z + µ. If we now define
X = �Z + µ, then Xn converges in distribution to X and it follows from Theorem 3.2 that
X ⇠ N (µ, �2).
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We end this lecture with a brief discussion of lognormal random variables. Recall that if
X ⇠ N (µ, �2), then the moment generating function of X is

mX(t) = E(etX) = exp

⇢
µt+

�

2
t

2

2

�
.

Exercise 3.25. Suppose that X ⇠ N (µ, �2) and let Y = e

X .

(a) Determine the density function for Y

(b) Determine the distribution function for Y . You will need to express your answer in
terms of �.

(c) Compute E(Y ) and Var(Y ). Hint: Use the moment generating function of X.

Answer. (c) E(Y ) = exp{µ+ �2

2 } and Var(Y ) = e

2µ+�2
(e�

2 � 1).

Definition 3.26. We say that a random variable Y has a lognormal distribution with pa-
rameters µ and �

2, written
Y ⇠ LN (µ, �2),

if log(Y ) is normally distributed with mean µ and variance �

2. That is, Y ⇠ LN (µ, �2) i↵
log(Y ) ⇠ N (µ, �2). Equivalently, Y ⇠ LN (µ, �2) i↵ Y = e

X with X ⇠ N (µ, �2).

Exercise 3.27. Suppose that Y1 ⇠ LN (µ1, �
2
1) and Y2 ⇠ LN (µ2, �

2
2) are independent

lognormal random variables. Prove that Z = Y1 ·Y2 is lognormally distributed and determine
the parameters of Z.

Remark. As shown in STAT 351, if a random variable Y has a lognormal distribution, then
the moment generating function of Y does not exist.
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