Lecture \#29: The Greeks

Recall that if $V\left(0, S_{0}\right)$ denotes the fair price (at time 0) of a European call option with strike price E and expiry date T, then the Black-Scholes option valuation formula is

$$
\begin{aligned}
V\left(0, S_{0}\right) & =S_{0} \Phi\left(\frac{\log \left(S_{0} / E\right)+\left(r+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}\right)-E e^{-r T} \Phi\left(\frac{\log \left(S_{0} / E\right)+\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}\right) \\
& =S_{0} \Phi\left(d_{1}\right)-E e^{-r T} \Phi\left(d_{2}\right)
\end{aligned}
$$

where

$$
d_{1}=\frac{\log \left(S_{0} / E\right)+\left(r+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}} \quad \text { and } \quad d_{2}=\frac{\log \left(S_{0} / E\right)+\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}=d_{1}-\sigma \sqrt{T}
$$

We see that this formula depends on

- the initial price of the stock S_{0},
- the expiry date T,
- the strike price E,
- the risk-free interest rate r, and
- the stock's volatility σ.

The partial derivatives of $V=V\left(0, S_{0}\right)$ with respect to these variables are extremely important in practice, and we will now compute them; for ease, we will write $S=S_{0}$. In fact, some of these partial derivatives are given special names and referred to collectively as "the Greeks":

- $\Delta=\frac{\partial V}{\partial S}$ (delta),
- $\Gamma=\frac{\partial^{2} V}{\partial S^{2}}=\frac{\partial \Delta}{\partial S}$ (gamma),
- $\rho=\frac{\partial V}{\partial r}$ (rho),
- $\Theta=\frac{\partial V}{\partial T}$ (theta),
- $\operatorname{vega}=\frac{\partial V}{\partial \sigma}$.

Note. Vega is not actually a Greek letter. Sometimes it is written as ν (which is the Greek letter nu).

Remark. On page 80 of [11], Higham changes from using $V\left(0, S_{0}\right)$ to denote the fair price at time 0 of a European call option with strike price E and expiry date T to using $C\left(0, S_{0}\right)$. Both notations seem to be widely used in the literature.

The financial use of each of "The Greeks" is as follows.

- Delta measures sensitivity to a small change in the price of the underlying asset.
- Gamma measures the rate of change of delta.
- Rho measures sensitivity to the applicable risk-free interest rate.
- Theta measures sensitivity to the passage of time. Sometimes the financial definition of Θ is

$$
-\frac{\partial V}{\partial T} .
$$

With this definition, if you are "long an option, then you are short theta."

- Vega measures sensitivity to volatility.

Apparently, there are even more "Greeks."

- Lambda, the percentage change in the option value per unit change in the underlying asset price, is given by

$$
\lambda=\frac{1}{V} \frac{\partial V}{\partial S}=\frac{\partial \log V}{\partial S}
$$

- Vega gamma, or volga, measures second-order sensitivity to volatility and is given by

$$
\frac{\partial^{2} V}{\partial \sigma^{2}}
$$

- Vanna measures cross-sensitivity of the option value with respect to change in the underlying asset price and the volatility and is given by

$$
\frac{\partial^{2} V}{\partial S \partial \sigma}=\frac{\partial \Delta}{\partial \sigma} .
$$

It is also the sensitivity of delta to a unit change in volatility.

- Delta decay, or charm, given by

$$
\frac{\partial^{2} V}{\partial S \partial T}=\frac{\partial \Delta}{\partial T},
$$

measures time decay of delta. (This can be important when hedging a position over the weekend.)

- Gamma decay, or colour, given by

$$
\frac{\partial^{3} V}{\partial S^{2} \partial T}
$$

measures the sensitivity of the charm to the underlying asset price.

- Speed, given by

$$
\frac{\partial^{3} V}{\partial S^{3}}
$$

measures third-order sensitivity to the underlying asset price.

In order to actually perform all of the calculations of the Greeks, we need to recall that

$$
\Phi^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} .
$$

Furthermore, we observe that

$$
\begin{equation*}
\log \left(\frac{S \Phi^{\prime}\left(d_{1}\right)}{E e^{-r T} \Phi^{\prime}\left(d_{2}\right)}\right)=0 \tag{18.1}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
S \Phi^{\prime}\left(d_{1}\right)-E e^{-r T} \Phi^{\prime}\left(d_{2}\right)=0 \tag{18.2}
\end{equation*}
$$

Exercise 18.1. Verify (18.1) and deduce (18.2).
Since

$$
d_{1}=\frac{\log (S / E)+\left(r+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}
$$

we find

$$
\begin{gathered}
\frac{\partial d_{1}}{\partial S}=\frac{1}{S \sigma \sqrt{T}}, \quad \frac{\partial d_{1}}{\partial r}=\frac{\sqrt{T}}{\sigma}, \quad \frac{\partial d_{1}}{\partial \sigma}=\frac{\sigma^{2} T-\left[\log (S / E)+\left(r+\frac{1}{2} \sigma^{2}\right) T\right]}{\sigma^{2} \sqrt{T}}=-\frac{d_{2}}{\sigma}, \quad \text { and } \\
\frac{\partial d_{1}}{\partial T}=\frac{-\log (S / E)+\left(r+\frac{1}{2} \sigma^{2}\right) T}{2 \sigma T^{3 / 2}}
\end{gathered}
$$

Furthermore, since

$$
d_{2}=d_{1}-\sigma \sqrt{T}
$$

we conclude

$$
\begin{gathered}
\frac{\partial d_{2}}{\partial S}=\frac{1}{S \sigma \sqrt{T}}, \quad \frac{\partial d_{2}}{\partial r}=\frac{\sqrt{T}}{\sigma}, \quad \frac{\partial d_{2}}{\partial \sigma}=\frac{\partial d_{1}}{\partial \sigma}-\sqrt{T}=-\frac{d_{2}}{\sigma}-\sqrt{T}, \quad \text { and } \\
\frac{\partial d_{2}}{\partial T}=\frac{\partial d_{1}}{\partial T}-\frac{\sigma}{2 \sqrt{T}}=\frac{-\log (S / E)+\left(r+\frac{1}{2} \sigma^{2}\right) T}{2 \sigma T^{3 / 2}}-\frac{\sigma}{2 \sqrt{T}}=\frac{-\log (S / E)+\left(r-\frac{1}{2} \sigma^{2}\right) T}{2 \sigma T^{3 / 2}} .
\end{gathered}
$$

- Delta. Since $V=S \Phi\left(d_{1}\right)-E e^{-r T} \Phi\left(d_{2}\right)$, we find

$$
\begin{aligned}
\Delta=\frac{\partial V}{\partial S} & =\Phi\left(d_{1}\right)+S \frac{\partial \Phi\left(d_{1}\right)}{\partial S}-E e^{-r T} \frac{\partial \Phi\left(d_{2}\right)}{\partial S} \\
& =\Phi\left(d_{1}\right)+S \Phi^{\prime}\left(d_{1}\right) \frac{\partial d_{1}}{\partial S}-E e^{-r T} \Phi^{\prime}\left(d_{2}\right) \frac{\partial d_{2}}{\partial S} \\
& =\Phi\left(d_{1}\right)+\frac{\Phi^{\prime}\left(d_{1}\right)}{\sigma \sqrt{T}}-E e^{-r T} \frac{\Phi^{\prime}\left(d_{2}\right)}{S \sigma \sqrt{T}} \\
& =\Phi\left(d_{1}\right)+\frac{1}{S \sigma \sqrt{T}}\left[S \Phi^{\prime}\left(d_{1}\right)-E e^{-r T} \Phi^{\prime}\left(d_{2}\right)\right] \\
& =\Phi\left(d_{1}\right)
\end{aligned}
$$

where the last step follows from (18.2).

- Gamma. Since $\Delta=\Phi\left(d_{1}\right)$, we find

$$
\Gamma=\frac{\partial^{2} V}{\partial S^{2}}=\frac{\partial \Delta}{\partial S}=\Phi^{\prime}\left(d_{1}\right) \frac{\partial d_{1}}{\partial S}=\frac{\Phi^{\prime}\left(d_{1}\right)}{S \sigma \sqrt{T}} .
$$

- Rho. Since $V=S \Phi\left(d_{1}\right)-E e^{-r T} \Phi\left(d_{2}\right)$, we find

$$
\begin{aligned}
\rho=\frac{\partial V}{\partial r} & =S \frac{\partial \Phi\left(d_{1}\right)}{\partial r}+E T e^{-r T} \Phi\left(d_{2}\right)-E e^{-r T} \frac{\partial \Phi\left(d_{2}\right)}{\partial r} \\
& =S \Phi^{\prime}\left(d_{1}\right) \frac{\partial d_{1}}{\partial r}+E T e^{-r T} \Phi\left(d_{2}\right)-E e^{-r T} \Phi^{\prime}\left(d_{2}\right) \frac{\partial d_{2}}{\partial r} \\
& =\frac{S \sqrt{T}}{\sigma} \Phi^{\prime}\left(d_{1}\right)+E T e^{-r T} \Phi\left(d_{2}\right)-\frac{E e^{-r T} \sqrt{T}}{\sigma} \Phi^{\prime}\left(d_{2}\right) \\
& =\frac{\sqrt{T}}{\sigma}\left[S \Phi^{\prime}\left(d_{1}\right)-E e^{-r T} \Phi^{\prime}\left(d_{2}\right)\right]+E T e^{-r T} \Phi\left(d_{2}\right) \\
& =E T e^{-r T} \Phi\left(d_{2}\right)
\end{aligned}
$$

where, as before, the last step follows from (18.2).

- Theta. Since $V=S \Phi\left(d_{1}\right)-E e^{-r T} \Phi\left(d_{2}\right)$, we find

$$
\begin{aligned}
\Theta=\frac{\partial V}{\partial T} & =S \frac{\partial \Phi\left(d_{1}\right)}{\partial T}+E r e^{-r T} \Phi\left(d_{2}\right)-E e^{-r T} \frac{\partial \Phi\left(d_{2}\right)}{\partial T} \\
& =S \Phi^{\prime}\left(d_{1}\right) \frac{\partial d_{1}}{\partial T}+E r e^{-r T} \Phi\left(d_{2}\right)-E e^{-r T} \Phi^{\prime}\left(d_{2}\right) \frac{\partial d_{2}}{\partial T} \\
& =S \Phi^{\prime}\left(d_{1}\right) \frac{\partial d_{1}}{\partial T}+E r e^{-r T} \Phi\left(d_{2}\right)-E e^{-r T} \Phi^{\prime}\left(d_{2}\right)\left[\frac{\partial d_{1}}{\partial T}-\frac{\sigma}{2 \sqrt{T}}\right] \\
& =\left[S \Phi^{\prime}\left(d_{1}\right)-E e^{-r T} \Phi^{\prime}\left(d_{2}\right)\right] \frac{\partial d_{1}}{\partial T}+E r e^{-r T} \Phi\left(d_{2}\right)+\frac{\sigma}{2 \sqrt{T}} E e^{-r T} \Phi^{\prime}\left(d_{2}\right) \\
& =E r e^{-r T} \Phi\left(d_{2}\right)+\frac{\sigma}{2 \sqrt{T}} E e^{-r T} \Phi^{\prime}\left(d_{2}\right)
\end{aligned}
$$

where, as before, the last step follows from (18.2). However, (18.2) also implies that we can write Θ as

$$
\begin{equation*}
\Theta=E r e^{-r T} \Phi\left(d_{2}\right)+\frac{\sigma S}{2 \sqrt{T}} \Phi^{\prime}\left(d_{1}\right) \tag{18.3}
\end{equation*}
$$

- Vega. Since $V=S \Phi\left(d_{1}\right)-E e^{-r T} \Phi\left(d_{2}\right)$, we find

$$
\begin{aligned}
\text { vega }=\frac{\partial V}{\partial \sigma} & =S \frac{\partial \Phi\left(d_{1}\right)}{\partial \sigma}-E e^{-r T} \frac{\partial \Phi\left(d_{2}\right)}{\partial \sigma} \\
& =S \Phi^{\prime}\left(d_{1}\right) \frac{\partial d_{1}}{\partial \sigma}-E e^{-r T} \Phi^{\prime}\left(d_{2}\right) \frac{\partial d_{2}}{\partial \sigma} \\
& =-\frac{d_{2}}{\sigma} S \Phi^{\prime}\left(d_{1}\right)-\left(-\frac{d_{2}}{\sigma}-\sqrt{T}\right) E e^{-r T} \Phi^{\prime}\left(d_{2}\right) \\
& =-\frac{d_{2}}{\sigma}\left[S \Phi^{\prime}\left(d_{1}\right)-E e^{-r T} \Phi^{\prime}\left(d_{2}\right)\right]+\sqrt{T} E e^{-r T} \Phi^{\prime}\left(d_{2}\right) \\
& =\sqrt{T} E e^{-r T} \Phi^{\prime}\left(d_{2}\right)
\end{aligned}
$$

where, as before, the last step follows from (18.2). However, (18.2) also implies that we can write vega as

$$
\text { vega }=S \sqrt{T} \Phi^{\prime}\left(d_{1}\right)
$$

Remark. Our definition of Θ is slightly different than the one in Higham [11]. We are differentiating V with respect to the expiry date T as opposed to an arbitrary time t with $0 \leq t \leq T$. This accounts for the discrepancy in the minus signs in (10.5) of [11] and (18.3).

Exercise 18.2. Compute lambda, volga, vanna, charm, colour, and speed for the BlackScholes option valuation formula for a European call option with strike price E.

We also recall the put-call parity formula for European call and put options from Lecture $\# 2$:

$$
\begin{equation*}
V\left(0, S_{0}\right)+E e^{-r T}=P\left(0, S_{0}\right)+S_{0} \tag{18.4}
\end{equation*}
$$

Here $P=P\left(0, S_{0}\right)$ is the fair price (at time 0) of a European put option with strike price E.
Exercise 18.3. Using the formula (18.4), compute the Greeks for a European put option. That is, compute

$$
\Delta=\frac{\partial P}{\partial S}, \quad \Gamma=\frac{\partial^{2} P}{\partial S^{2}}, \quad \rho=\frac{\partial P}{\partial r}, \quad \Theta=\frac{\partial P}{\partial T}, \quad \text { and } \quad \text { vega }=\frac{\partial P}{\partial \sigma}
$$

Note that gamma and vega for a European put option with strike price E are the same as gamma and vega for a European call option with strike price E.

