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Prof. Michael Kozdron

Lecture #29: The Greeks

Recall that if V (0, S
0

) denotes the fair price (at time 0) of a European call option with strike
price E and expiry date T , then the Black-Scholes option valuation formula is
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We see that this formula depends on

• the initial price of the stock S

0

,

• the expiry date T ,

• the strike price E,

• the risk-free interest rate r, and

• the stock’s volatility �.

The partial derivatives of V = V (0, S
0

) with respect to these variables are extremely impor-
tant in practice, and we will now compute them; for ease, we will write S = S

0

. In fact,
some of these partial derivatives are given special names and referred to collectively as “the
Greeks”:
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Note. Vega is not actually a Greek letter. Sometimes it is written as ⌫ (which is the Greek
letter nu).
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Remark. On page 80 of [11], Higham changes from using V (0, S
0

) to denote the fair price
at time 0 of a European call option with strike price E and expiry date T to using C(0, S

0

).
Both notations seem to be widely used in the literature.

The financial use of each of “The Greeks” is as follows.

• Delta measures sensitivity to a small change in the price of the underlying asset.

• Gamma measures the rate of change of delta.

• Rho measures sensitivity to the applicable risk-free interest rate.

• Theta measures sensitivity to the passage of time. Sometimes the financial definition
of ⇥ is

�@V

@T

.

With this definition, if you are “long an option, then you are short theta.”

• Vega measures sensitivity to volatility.

Apparently, there are even more “Greeks.”

• Lambda, the percentage change in the option value per unit change in the underlying
asset price, is given by
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• Vega gamma, or volga, measures second-order sensitivity to volatility and is given by
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• Vanna measures cross-sensitivity of the option value with respect to change in the
underlying asset price and the volatility and is given by
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It is also the sensitivity of delta to a unit change in volatility.

• Delta decay, or charm, given by
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measures time decay of delta. (This can be important when hedging a position over
the weekend.)

18–2



• Gamma decay, or colour, given by
@
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measures the sensitivity of the charm to the underlying asset price.

• Speed, given by
@
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,

measures third-order sensitivity to the underlying asset price.

In order to actually perform all of the calculations of the Greeks, we need to recall that
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Furthermore, we observe that
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Exercise 18.1. Verify (18.1) and deduce (18.2).
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• Delta. Since V = S � (d
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where the last step follows from (18.2).

• Gamma. Since � = �(d
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where, as before, the last step follows from (18.2).
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where, as before, the last step follows from (18.2). However, (18.2) also implies that
we can write ⇥ as

⇥ = Ere

�rT � (d
2

) +
�S

2
p
T

�0 (d
1

) . (18.3)
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where, as before, the last step follows from (18.2). However, (18.2) also implies that
we can write vega as
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Remark. Our definition of ⇥ is slightly di↵erent than the one in Higham [11]. We are
di↵erentiating V with respect to the expiry date T as opposed to an arbitrary time t with
0  t  T . This accounts for the discrepancy in the minus signs in (10.5) of [11] and (18.3).

Exercise 18.2. Compute lambda, volga, vanna, charm, colour, and speed for the Black-
Scholes option valuation formula for a European call option with strike price E.

We also recall the put-call parity formula for European call and put options from Lecture #2:
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Here P = P (0, S
0

) is the fair price (at time 0) of a European put option with strike price E.

Exercise 18.3. Using the formula (18.4), compute the Greeks for a European put option.
That is, compute
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Note that gamma and vega for a European put option with strike price E are the same as
gamma and vega for a European call option with strike price E.
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